
UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Documentation

1

UWaterloo CS445/ECE451/CS645 Winter 2024

Requirements Engineering Process

2

UWaterloo CS445/ECE451/CS645 Winter 2024

SRS – Software Requirements Specification
• States the functions and capabilities a software system must provide,

its characteristics, and the constraints it must respect. 

• Should describe as thoroughly as necessary the system’s behaviours
under various conditions, as well as desired system qualities such as
performance, security, and usability. 

• Is the basis for subsequent project planning, design, and coding and
the foundation for system testing and user documentation. 

• It should not contain design, construction, testing, or project
management details other than known design and implementation
constraints.

3

UWaterloo CS445/ECE451/CS645 Winter 2024

What is it useful for?
• Customers, the marketing department, and sales staff need to know

what product they can expect to be delivered.

• Project managers base their estimates of schedule, effort, and

resources on the requirements.

• Software development teams need to know what to build.

• Testers use it to develop requirements-based tests, test plans, and

test procedures.

• Maintenance and support staff use it to understand what each part of

the product is supposed to do.

4

UWaterloo CS445/ECE451/CS645 Winter 2024

What is it useful for?
• Documentation writers base user manuals and help screens on the

SRS and the user interface design.

• Training personnel use the SRS and user documentation to develop

educational materials.

• Legal staff ensures that the requirements comply with applicable

laws and regulations.

• Subcontractors base their work on, and can be legally held to, the

specified requirements.

5

UWaterloo CS445/ECE451/CS645 Winter 2024

Organize, Organize, Organize
• Use an appropriate template to organize all the necessary

information.

• Label and style sections, subsections, and individual requirements

consistently.

• Use visual emphasis (bold, underline, italics, colour, and fonts)

consistently and judiciously. Remember that colour highlighting might
not be visible to people with colour blindness or when printed in
grayscale.

• Create a table of contents to help readers find the necessary

information.

• Number all figures and tables, give them captions and refer to them

by number.

6

UWaterloo CS445/ECE451/CS645 Winter 2024

Organize, Organize, Organize
• If you are storing requirements in a document, define your word

processor’s cross-reference facility rather than a hard-coded page or
section numbers to refer to other locations within a document.

• If you use documents, define hyperlinks to let the reader jump to

related sections in the SRS or other files.

• If you store requirements in a tool, use links to let the reader

navigate related information.

• Include visual representations of information when possible to

facilitate understanding.

• Enlist a skilled editor to ensure the document is coherent and uses a

consistent vocabulary and layout.

7

A Software Requirements Specification Template
1. Introduction

1.1.Purpose

1.2.Scope

1.3.Definitions, Acronyms and Abbreviations

1.4.References

1.5.Overview

2. Overall Description

2.1.Product Perspective

2.2.Product Functions

2.3.User Characteristics

2.4.Constraints

2.5.Assumptions

2.6.Apportioning of Requirements

8

3. Specific Requirements

3.1.External Interface Requirements

3.1.1.User Interfaces

3.1.2.Hardware Interfaces

3.1.3.Software Interfaces

3.1.4.Communication Interfaces

3.2.System Features

3.2.1.[Feature 1]

3.2.1.1.Purpose

3.2.1.2.Response Sequence

3.2.1.3.Functional Requirements

3.3.Performance Requirements

3.4.Design Constraints

3.5.Software System Attributes

3.6.Other Requirements

Appendix

Index

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Note
All examples are related to the same system.

The set of examples in each section is not complete. Make sure you
write a complete set of requirements for each section.

9

UWaterloo CS445/ECE451/CS645 Winter 2024

1. Introduction
The introduction presents an overview to help the reader understand
how the SRS is organized and how to use it.

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms and Abbreviations

1.4 References

1.5 Overview

10

UWaterloo CS445/ECE451/CS645 Winter 2024

1.1 Purpose
• Identify the product or application whose requirements are specified

in this document, including the revision or release number.

• If this SRS pertains to only part of a complex system, identify that

portion or subsystem.

• Describe the different types of readers that the document is

intended for, such as developers, project managers, marketing staff,
users, testers, and documentation writers.

11

Example
1.1 Purpose

This SRS describes the functional and non-functional requirements for
software release 1.0 of the web-based e-catalog for cataloging
physical and virtual items that are to be filed or stored away. This
document is intended to be used by the project team members who
will implement and verify the correct functioning of the system. All
requirements listed are committed for release 1.0.

12UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

1.2 Scope
• Provide a short description of the software being specified and its

purpose.

• Relate the software to the user or corporate goals, business

objectives, and strategies.

• If a separate vision and scope or similar document are available,

refer to it rather than duplicate its contents here.

• An SRS that specifies an incremental release of an evolving product

should contain its scope statement as a subset of the long-term
strategic product vision.

• You might provide a high-level summary of the release's major

features or the significant functions it performs.

13

Example
1.2 Project Scope

The e-catalog will permit client administrators to build a catalogue of
physical and virtual items for registered users to discover and check in/
out. Physical items must be checked out from one of the item processing
facilities, and once it is time to check in, the item can be mailed in or
dropped off at the facility.

The e-catalog uses electronic IDs as barcodes to identify and monitor
item status. Administrators can sort items into categories, and registered
users can associate customizable labels with items and containers for
easy identification. This web-based e-catalog, which can be used on
desktop and mobile, provides an efficient and convenient way to retrieve
and catalogue documents and items. A detailed project description is
available in the E-catalog Product Vision and Scope Document [1].

14UWaterloo CS445/ECE451/CS645 Winter 2024

1.3 Definitions, Acronyms and Abbreviations
• Describe any standards or typographical conventions used, including

the meaning of specific text styles, highlighting, or notations.

• If you are manually labelling requirements, you might specify the

format here for anyone who needs to add one later.

• Define any specialized terms that a reader needs to know to

understand the SRS, including acronyms and abbreviations.

• Spell out each acronym and provide its definition.

• Consider building a reusable enterprise-level dictionary that spans

multiple projects and incorporates by reference any terms that
pertain to this project.

• Each SRS would then define only those terms specific to an individual

project that do not appear in the enterprise-level dictionary.

15UWaterloo CS445/ECE451/CS645 Winter 2024

Example
1.3 Definitions, Acronyms and Abbreviations

This document uses the following conventions:

1. Features will be documented with a description, a priority, and a
set of functional requirements.

2. New features or features with new requirements will be denoted
using the notation: (NEW).

3. “User” in System Features refers to the administrator and
registered users.

4. If a data type is stated as String (alpha), this means only strings
consisting of alphabet characters are permitted.

16UWaterloo CS445/ECE451/CS645 Winter 2024

Example
5. If a data type is stated as a String (alphanumeric), this means
strings consisting of the alphabet and numeric characters are
permitted.

6. If a data type is stated as String, this means all string values are
permitted unless there are additional constraints specified.

7. If no length is permitted for a data type, there is no length
restriction.

8. In the State Machine Diagram Descriptions in the Appendix, events
are bolded and grouped by large grouping states, and conditions are
italicized.

17UWaterloo CS445/ECE451/CS645 Winter 2024

1.4 References
• List any documents or other resources to which this SRS refers.

Include hyperlinks to them if they are in a persistent location.

• These might include user interface style guides, contracts, standards,

system requirements specifications, interface specifications, or the
SRS for a related product.

• Provide enough information so the reader can access each reference,

including its title, author, version number, date, source, storage
location, or URL.

18UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Example:
1.4 References

1. Wiegers, Karl. Cafeteria Ordering System Vision and Scope
Document, www.processimpact.com/projects/COS/COS Vision and
Scope.docx

2. Beatty, Joy. Process Impact Intranet Development Standard, Version
1.3, www.processimpact.com/corporate/standards/PI Intranet
Development Standard.pdf

3. Rath, Andrew. Process Impact Internet Application User Interface
Standard, Version 2.0, www.processimpact.com/corporate/standards/
PI Internet UI Standard.pdf

19

http://www.processimpact.com/projects/COS/COS%20Vision%20and%20Scope.docx
http://www.processimpact.com/projects/COS/COS%20Vision%20and%20Scope.docx
http://www.processimpact.com/projects/COS/COS%20Vision%20and%20Scope.docx
http://www.processimpact.com/projects/COS/COS%20Vision%20and%20Scope.docx
http://www.processimpact.com/corporate/standards/PI%20Intranet%20Development%20Standard.pdf
http://www.processimpact.com/corporate/standards/PI%20Intranet%20Development%20Standard.pdf
http://www.processimpact.com/corporate/standards/PI%20Intranet%20Development%20Standard.pdf

1.5 Overview
This subsection should

a) Describe what the rest of the SRS contains;

b) Explain how the SRS is organized.

20UWaterloo CS445/ECE451/CS645 Winter 2024

Example
1.5 Overview

The remainder of this SRS describes the system features and
requirements. This SRS document is organized as follows. Section 2
includes…

21UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

2. Overall Description
This section presents a high-level overview of the product, the
environment in which it will be used, the anticipated users, and known
constraints, assumptions, and dependencies.

2.1 Product Perspective

2.2 Product Functions

2.3 User Characteristics

2.4 Constraints

2.5 Assumptions and Dependencies

2.6 Apportioning of Requirements

22

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1 Product Perspective
• Describe the product’s context and origin. Is it the next member of a

growing product line, the next version of a mature system, a
replacement for an existing application, or an entirely new product?

• If this SRS defines a component of a larger system, state how this

software relates to the overall system and identify major interfaces
between the two.

• Consider including visual models such as a context diagram to show

the product’s relationship to other systems.

23

Example
2.1 Product Perspective

The e-catalog system is a new, self-contained web-based database
system implemented for the client company. The client company will
sell it to other companies to replace the latter’s manual task of
cataloging physical and virtual items. The context diagram in Figure
2.1 illustrates the external entities and system interfaces for release
1.0. The system is expected to evolve over several releases, ultimately
allowing one to check the location of an item via virtual reality before
going there.

24UWaterloo CS445/ECE451/CS645 Winter 2024

Example

25UWaterloo CS445/ECE451/CS645 Winter 2024

2.2 Product Functions
This subsection of the SRS should provide a summary of the major
functions that the software will perform.

26UWaterloo CS445/ECE451/CS645 Winter 2024

Example
2.2 Product Functions

The software provides customer account maintenance and invoice
preparation. In addition,…

27UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

2.3 User Characteristics
• Identify the various user classes you anticipate will use this product

and describe their pertinent characteristics.

• Some requirements might pertain only to specific user classes.

Identify the favoured user classes. User classes represent a subset of
the stakeholders described in the vision and scope document.

• User class descriptions are a reusable resource.

• If a master user class catalogue is available, you can incorporate user

class descriptions by simply pointing to them in the catalogue instead
of duplicating information here.

28

Example
2.3 User Characteristics

Registered users are the target audience of this system, but the
system can be targeted toward other users as well. Table 2.2 below
discusses the user classes of the e-catalog system and their
characteristics.

29UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024 30

UWaterloo CS445/ECE451/CS645 Winter 2024 31

2.4 Constraints
This subsection of the SRS should provide a general description of any other items that
will limit the developer’s options. These include:

a) Regulatory policies;

b) Hardware limitations (e.g., signal timing requirements)

c) Interface to other applications;

d) Parallel operation;

e) Audit functions;

f) Control functions;

g) Higher-order language requirements;

h) Signal handshake protocols (e.g., XON-XOFF, ACK-NACK);

i) Reliability requirements;

j) Criticality of the application;

k) Safety and security considerations.

32UWaterloo CS445/ECE451/CS645 Winter 2024

Example
2.4 Constraints

The software must follow the regulatory policies listed below:

Because of the possible harm that the software can cause to human
life, the following safety measures need to be incorporated at the
development level:

33UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

2.5 Assumptions and Dependencies
• An assumption is a statement that is believed to be true in the

absence of proof or definitive knowledge.

• Problems can arise if assumptions are incorrect, obsolete, not

shared, or change so that certain assumptions will translate into
project risks.

• One SRS reader might assume that the product will conform to a

particular user interface convention, whereas another might assume
something different.

34

UWaterloo CS445/ECE451/CS645 Winter 2024

• A developer might assume that a particular set of functions will be
custom-written for this application. In contrast, the business analyst
might think they will be reused from a previous project, and the
project manager might expect to procure a commercial function
library.

• The assumptions to include here are those related to system

functionality; business-related assumptions appear in the vision and
scope document

• Identify any dependencies the project or system being built has on

external factors or components outside its control. For instance, if
Microsoft .NET Framework 4.5 or a more recent version must be
installed before your product can run, that’s a dependency.

35

Example
2.5 Assumptions and Dependencies

• AS-1: When registered users select to check in an item, either by

drop-off or delivery, they do so immediately.

• AS-2: Permissions are only checked when a registered user attempts

to check out an item.

• AS-3: Registered users have to check in an item to the facility they

had checked it out from.

• DE-1: The check in and check out operations of the e-catalog system

is dependent on barcode readers.

36UWaterloo CS445/ECE451/CS645 Winter 2024

2.6 Apportioning of Requirements
This subsection of the SRS should identify requirements that may be
delayed until future versions of the system.

37UWaterloo CS445/ECE451/CS645 Winter 2024

Example
2.6 Apportioning of Requirements

The software is planned to include a major user viewing functionality
after months of its release.

Payment using biometric confirmation is an expected functionality for
future releases of the software.

38UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

3. Specific Requirements
• The SRS template discussed shows functional requirements organized

by system feature, which is just one possible way to arrange them.

• Other organizational options include arranging functional

requirements by functional area, process flow, use case, mode of
operation, user class, stimulus, and response.

• Hierarchical combinations of these elements, such as use cases

within user classes, are also possible.

• There is no single correct choice; select a method of organization

that makes it easy for readers to understand the product’s intended
capabilities.

39

3.1 External Interface Requirements
• This section provides information to ensure that the system

communicates appropriately with users and external hardware or
software elements. Reaching agreement on external and internal
system interfaces has been identified as a software industry best
practice (Brown 1996).

• 3.1.1 User Interfaces

• 3.1.2 Hardware Interfaces

• 3.1.3 Software Interfaces

• 3.1.4 Communications Interfaces

40UWaterloo CS445/ECE451/CS645 Winter 2024

3.1.1 User Interfaces
Describe the logical characteristics of each user interface that the
system needs. Some possible items to address here are:

• References to user interface standards or product line style guides

that are to be followed

• Standards for fonts, icons, button labels, images, colour schemes,

field tabbing sequences, commonly used controls, branding graphics,
copyright and privacy notices, and the like

• Screen size, layout, or resolution constraints

• Standard buttons, functions, or navigation links that will appear on

every screen, such as a help button

41UWaterloo CS445/ECE451/CS645 Winter 2024

3.1.1 User Interfaces
• Shortcut keys

• Message display and phrasing conventions

• Data validation guidelines (such as input value restrictions and when

to validate field contents)

• Layout standards to facilitate software localization

• Accommodations for users who are visually impaired, colour blind, or

have other limitations

42UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.1.1 User Interfaces

UI-1: The user interface shall contain the following accessibility
requirements:

UI-1.1: The system provides a wheelchair accessibility flag to indicate
that a location is wheelchair accessible.

UI-1.2: All keyboard shortcut keys are permitted for use throughout
the whole system.

UI-2: The user interface shall contain the following resolution
requirements:

UI-2.1: The desktop web application runs ideally in 1080p.

UI-2.2: The mobile web application runs ideally in 750p.

43UWaterloo CS445/ECE451/CS645 Winter 2024

3.1.2 Hardware Interfaces
• Describe the characteristics of each interface between the system's

software and hardware components, if any.

• This description might include the supported device types, the data

and control interactions between the software and the hardware,
and the communication protocols to be used.

• List the inputs and outputs, their formats, their valid values or

ranges, and any timing issues developers need to be aware of.

• If this information is extensive, consider creating a separate

interface specification document.

44UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.1.2 Hardware Interfaces

No hardware interface requirements have been identified.

45UWaterloo CS445/ECE451/CS645 Winter 2024

3.1.3 Software Interfaces
• Describe the connections between this product and other software

components (identified by name and version), including other
applications, databases, operating systems, tools, libraries, websites,
and integrated commercial components.

• State the purpose, formats, and contents of the messages, data, and

control values exchanged between the software components.

• Specify the mappings of input and output data between the systems

and any translations needed for the data to get from one system to
the other.

46UWaterloo CS445/ECE451/CS645 Winter 2024

3.1.3 Software Interfaces
• Describe the services needed by or from external software

components and the nature of the inter-component communications.

• Identify data that will be exchanged between or shared across

software components.

• Specify nonfunctional interface requirements, such as service levels

for response times and frequencies or security controls and
restrictions.

47UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.1.3 Software Interfaces

The system will contain the following interactions with the listed external software:

SI-1: MySQL

SI-1.1: The system will interact with MySQL, a SQL based database relational database
management system (DBMS) which will backup information once a month or prior to a major
upgrade.

SI-1.2: The system will interact with MySQL by following the listed protocol

SI-1.2.1: The user creates a request with the application.

SI-1.2.2: The application’s external schema acknowledges the request and forwards the
request to the conceptual schema.

SI-1.2.3: The application’s conceptual schema acknowledges the request and forwards the
request to the physical schema.

SI-1.2.4: The application’s physical schema acknowledges the request and forwards the
request to the MySQL server.

SI-1.3: The system sends a payload to the MySQL server similar to the one listed below. Figure
5.1 below is an example of the payload when a new user is saved into the database:

48UWaterloo CS445/ECE451/CS645 Winter 2024

Example

49UWaterloo CS445/ECE451/CS645 Winter 2024

3.1.4 Communications Interfaces
• State the requirements for any communication functions the product

will use, including email, web browser, network protocols, and
electronic forms.

• Define any pertinent message formatting.

• Specify communication security and encryption issues, data transfer

rates, handshaking, and synchronization mechanisms.

• State any constraints around these interfaces, such as whether

certain types of email attachments are acceptable.

50UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.1.4 Communications Interfaces

CI-4: The system will contain the following requirements in regard to
notifications:

CI-4.1: The system will send notifications to users 24 hours prior to the check
in date.

CI-4.2: Notifications will list the items and the time that the item must be
returned by.

CI-5: The system will send an internal email to the customer support agent
when a user files a request.

CI-5.1: This email will allow attachments of no more than 10MB.

CI-6: The system will send an internal email to the legal agent when an item is
reported.

CI-6.1: This email will allow attachments of no more than 10MB.

51UWaterloo CS445/ECE451/CS645 Winter 2024

3.2 System Features
• 3.2.1 [Feature 1]

• 3.2.1.1 Purpose

• 3.2.1.2 Response Sequence

• 3.2.1.3 Functional Requirements

52UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.2 System Features

3.2.1 Sign Up for an Account

3.2.1.1 Purpose

An unregistered user of the e-catalog system may select to sign up for
an account, which will give them access to the main features of the e-
catalog as described below. Priority = High.

3.2.1.2 Response Sequence

3.1.2 Functional Requirements

R-1: Only an unregistered user with a valid email address should be
able to sign up for an account.

R-2: An unregistered user must choose a unique username when signing
up for an account.

53UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.2.2 Add a Label

3.2.2.1 Purpose

A registered user may select to add a label to an item or a container.
Priority = Medium.

3.2.2.2 Response Sequence

3.2.2.3 Functional Requirements

R-1: A registered user should only be able to view the labels that they
have added to an item or container.

R-2: A registered user should be able to add a unique label to an item.

R-3: A registered user should be able to add a label to a container (NEW).

R-4: Only a registered user should be able to add a label to an item or
container.

54UWaterloo CS445/ECE451/CS645 Winter 2024

3.3 Performance Requirements
• This subsection should specify both the static and the dynamic

numerical requirements placed on the soft- ware or on human
interaction with the software as a whole.

55UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.3 Performance Requirements

PR1 The system should return the required information in at most 10
milliseconds.

PR2 95% of the transactions shall be processed in less than 1s.

56UWaterloo CS445/ECE451/CS645 Winter 2024

3.4 Design Constraints
• This should specify design constraints that can be imposed by other

standards, hardware limitations, etc.

57UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.4 Design Constraints

DC1 - E-mail based solutions are forbidden.

DC2 - The software cost cannot exceed a million dollars.

58UWaterloo CS445/ECE451/CS645 Winter 2024

3.5 Software System Attributes
• This section specifies nonfunctional requirements other than

constraints, which are recorded in Section 2.4, and external
interface requirements, which appear in Section 3.1.

• These quality requirements should be specific, quantitative, and

verifiable. Indicate the relative priorities of various attributes, such
as ease of use over ease of learning or security over performance.

• A rich specification notation clarifies the needed levels of each

quality much better than can simple descriptive statements.

59UWaterloo CS445/ECE451/CS645 Winter 2024

3.5 Softare System Attributes
3.5.1 Usability

3.5.2 Security

3.5.3 Safety

3.5.4 Availability

3.5.5 Integrity

3.5.6 Reliability

3.5.7 Efficiency

3.5.8 Robustness

3.5.9 Modifiability

3.5.10 Reusability

3.5.11 Scalability

3.5.12 Verifiability

60UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.5 Software System Attributes

More than 50% of users should consider the software easy to use.

The software should run with at most a 30 millisecond delay when
more than 10,000 users are connected simultaneously.

61UWaterloo CS445/ECE451/CS645 Winter 2024

3.6 Other Requirements
• Define any other requirements that are not covered elsewhere in the

SRS.

• Examples are legal, regulatory, or financial compliance and standards

requirements; requirements for product installation, configuration,
startup, and shutdown; and logging, monitoring, and audit trail
requirements.

• Instead of just combining these all under “Other”, add any new sections

to the template that are pertinent to your project. Omit this section if
all your requirements are accommodated in other sections.

• Transition requirements necessary for migrating from a previous system

to a new one could be included here if they involve software being
written (as for data conversion programs) or in the project management
plan if they do not (as for training development or delivery).

62UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.6 Other Requirements

3.6.1 Legal Requirements

L-2: Items that are returned defective or damaged in any manner may result in the
user account being charged for full replacements, which is handled beyond the
scope of the system.

3.6.2 Regulatory Requirements

R-1: The system shall provide the following accessibility features to abide by
Canadian law.

3.6.3 Financial Requirements

3.6.4 Transition Requirements

T-1: The system must follow the transition requirements in the order stated below:

T-1.1: Prior to system updates, the production code must be pushed onto a test
server in which a quality analysis is performed initially by the QA team.

63UWaterloo CS445/ECE451/CS645 Winter 2024

Example
3.6.5 Installation Requirements

3.6.6 Logs

3.6.6.1 Logging

L-1: All activities of users interacting with the system shall be logged
into respective text files containing the following information:

L-1.1: Name, username…

3.6.6.2 Monitoring

M-2: System logs shall be monitored every month by the QA team
except for immediate security issues.

3.6.6.3 Auditing

A-2: System logs shall be audited by the admin.

64UWaterloo CS445/ECE451/CS645 Winter 2024

Appendix
• This optional section includes or points to pertinent analysis models

such as data flow diagrams, feature trees or entity-relationship
diagrams.

• Often, it is more helpful for the reader to incorporate specific

models into the relevant sections of the specification instead of
collecting them at the end.

• Include any additional table, diagrams, etc that you created for the

final SRS.

65UWaterloo CS445/ECE451/CS645 Winter 2024

Example
Appendix

Details about the decision of lowering the security of the system - …

Explanation of AI models - …

66UWaterloo CS445/ECE451/CS645 Winter 2024

Characteristics of Excellent Requirements
• Characteristics of requirement statements

• Characteristics of requirements collections

67UWaterloo CS445/ECE451/CS645 Winter 2024

Characteristics of Requirement Statements
• Complete

• Correct

• Feasible

• Necessary

• Prioritized

• Unambiguous

• Verifiable

68UWaterloo CS445/ECE451/CS645 Winter 2024

Characteristics of Requirements Collections
• Complete

• Consistent

• Modifiable

• Traceable

69UWaterloo CS445/ECE451/CS645 Winter 2024

Tips
• Clarity and conciseness. Write requirements in complete sentences

using proper grammar, spelling, and punctuation. Keep sentences and
paragraphs short and direct. Write requirements in simple language
appropriate to the user domain, avoiding jargon. Define specialized
terms in a glossary.

• The keyword “shall”. A traditional convention uses the keyword

“shall” to describe some system capability.

• Active voice. Write in the active voice to make it clear what entity is

taking action described.

• Individual requirements. Avoid writing long narrative paragraphs

that contain multiple requirements.

70UWaterloo CS445/ECE451/CS645 Winter 2024

Tips
• Appropriate detail. An important part of requirements analysis is

decomposing a high-level requirement into sufficient detail to clarify
and flesh it out. There’s no single correct answer to the commonly
asked question “How detailed should the requirements be?”. Provide
enough specifics to minimize the risk of misunderstanding based on
the development team’s knowledge and experience.

• Representation techniques. Readers’ eyes glaze over when

confronting a dense mass of turgid text or a long list of similar-
looking requirements. Consider the most effective way to
communicate each requirement to the intended audience. Some
alternatives to the natural language requirements we’re used to are
lists, tables, visual analysis models, charts, mathematical formulas,
photographs, sound clips, and video clips.

71UWaterloo CS445/ECE451/CS645 Winter 2024

Ambiguity
• Avoid.

• Fuzzy words.

72UWaterloo CS445/ECE451/CS645 Winter 2024

Ambiguity

73

Ambiguous Terms Ways To Improve Them

acceptable, adequate Define what constitutes acceptability and how the system can
judge this.

and/or Specify whether you mean "and", "or", or "any combination of" so
the reader does not have to guess.

as much as practicable Do not leave it up to the developers to determine what is
practicable. Make it a "to be decided" and set a date to find out.

at least, at a minimum,
not more than, not to
exceed

Specify the minimum and maximum acceptable values.

best, greatest, most State what level of achievement is desired and the minimum
acceptable level of achievement.

between, from X to Y Define whether the end points are included in the range.

UWaterloo CS445/ECE451/CS645 Winter 2024

Ambiguity

74

Ambiguous Terms Ways To Improve Them

depends on Describe the nature of the dependency. Does another system
provide input to this system, must other software be installed
before your software can run, or does your system rely on
another to perform some calculations or provide other services?

efficient Define how efficiently the system uses resources, how quickly it
performs specific operations, or how quickly users can perform
tasks with the system.

fast, quick, rapid Specify the minimum acceptable time in which the system
performs some action.

flexible, versatile Describe the ways in which the system must be able to adapt to
changing operating conditions, platoforms, or business needs.

improved, better, faster,
superior, higher quality

Quantify how much better or faster constitutes adequate
improvement in a specific functional area or quality aspect.

UWaterloo CS445/ECE451/CS645 Winter 2024

Ambiguity

75

Ambiguous Terms Ways To Improve Them

including, including but
not limited to, and so on,
etc., such as, for instance

List all possible values or functions, not just examples, or refer
the reader to the location of the full list. Otherwise, different
readers might have different interpretations of what the whole
set of items being referred to contains or where the list stops.

in most cases, generally,
usually, almost always

Clarify when the stated conditions or scenarios do not apply and
what happens then. Describe how either the user or the system
cand distinguish one case from the other

match, equals, agree, the
same

Define whether a text comparison is case sensitive and whether
it means the phrase "contains", "starts with", or is "exact". For
real numbers, specify the degree of precision in the comparison.

maximize, minimize,
optimize

State the maximum and minimum acceptable values or some
parameter.

normally, ideally Identify abnormal or non-ideal conditions and describe how the
system should behave in those situations.

UWaterloo CS445/ECE451/CS645 Winter 2024

Ambiguity

76

Ambiguous Terms Ways To Improve Them

optionally Clarify whether this means a developer choice, a system choice,
or a user choice.

probably, ought to, should Will it or will it not?

reasoable when necessary,
where appropriate, if
possible, as applicable

Explain how either the developer or the user can make this
judgement.

robust Define how the system is to handle exceptions and respond to
the unexpected operating conditions.

seamless, transparent,
graceful

What does "seamless" or "graceful" mean to the user? Translate
the user's expectations into specific observable product
characteristics.

several,some, many, few,
multiple, numerous

State how many, or provide the minimum and maximum bounds
of a range.

UWaterloo CS445/ECE451/CS645 Winter 2024

Ambiguity

77

Ambiguous Terms Ways To Improve Them

shouldn't, won't Try to state requirements as positives, describing what the
system will do.

state-of-the-art Define what this phrase means to the stakeholder.

sufficient Specify how much of something constitutes sufficiency.

support, enable Define exactly what functions the system will perform that
constitute "supporting" some capability.

user-friendly, simple, easy Describe system characteristics that will satify the customer's
usage needs and usability expectations.

UWaterloo CS445/ECE451/CS645 Winter 2024

Ambiguity
• The A/B construct. Many requirements specifications include

expressions in the form “A/B”, in which two related (or synonymous,
or opposite) terms are combined with a slash.

• Boundary values. Many ambiguities occur at the boundaries of

numerical ranges in both requirements and business rules.

• Negative requirements. People sometimes write requirements that

say what the system will not do rather than what it will do. How do
you implement a don’t-do-this requirement? Double and triple
negatives are particularly tricky to decipher. Try to rephrase negative
requirements into a positive sense that clearly describes the
restricting behaviour.

78UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Documentation

79

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Validation and Verification

1

UWaterloo CS445/ECE451/CS645 Winter 2024 2

Requirements Engineering Process

UWaterloo CS445/ECE451/CS645 Winter 2024

1. Validation vs. Verification

3

UWaterloo CS445/ECE451/CS645 Winter 2024

Requirements Engineering Reference Model

4

Requirements Engineering and Testing

5UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Requirements Validation

6

Requirements validation activities attempt to ensure that:

• The software requirements accurately describe the intended system

capabilities and properties that will satisfy the various stakeholders’
needs.

• The software requirements are correctly derived from the business

requirements, system requirements, business rules, and other sources.

• The requirements are complete, feasible, and verifiable.

• All requirements are necessary, and the entire set is sufficient to meet

the business objectives.

• All requirements representations are consistent with each other.

• The requirements provide an adequate basis to proceed with design

and construction.

Cost of Fix Errors

7UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

2. Reviewing Requirements
• Reviewing requirements is a powerful technique for
identifying ambiguous or unverifiable requirements,
requirements that are not defined clearly enough for the
design to begin, and other problems.

• Different kinds of peer reviews:

• A peer desk check, in which you ask one colleague to look over

your work product.

• A pass around, in which you invite several colleagues to examine a

deliverable concurrently.

• A walkthrough, during which the author describes a deliverable

and solicits comments.

8

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1 The Inspection Process
• Michael Fagan developed the inspection process at IBM (Fagan 1976;

Radice 2002).

• Others have extended or modified his method (Gilb and Graham

1993; Wiegers 2002).

• Inspection has been recognized as a software industry best practice

(Brown 1996).

• Any software work product, including requirements, design

documents, source code, test documentation, and project plans, can
be inspected.

• It involves a small team of participants carefully examining a work

product for defects and improvement opportunities.

• Inspections serve as a quality gate through which project deliverables

must pass before they are baselined.

9

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.1 Participants
• The author of the work product and perhaps peers of the author.

• Business analyst who wrote the requirement.

• Another experienced business analyst to check for errors

• People who are the information sources fed into the item being
inspected.

• Actual users, customers, the author of the predecessor specification.

• People who will do work based on the item being inspected.

• A developer, a tester, a project manager, and a user documentation writer.

• People who are responsible for interfacing systems that will be
affected by the item being inspected.

• Will check the external interfaces requirements

10

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.2 Inspection Roles
All participants in an inspection, including the author, look for
defects and improvement opportunities. Some of the
inspection team members perform the following specific roles
during the inspection:

• Author

•Moderator

• Reader

• Recorder

11

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.3 Entry Criteria
• Set clear expectations for authors to follow while preparing for an

inspection.

• Keep the inspection team from spending time on issues that should be

resolved before the inspection.

• The moderator uses the entry criteria as a checklist before inspecting.

• Examples:

• The document conforms to the standard template and does not have obvious spelling,
grammatical, or formatting issues.

• Line numbers or other unique identifiers are printed on the document to facilitate
referring to specific locations.

• All open issues are marked as TBD (to be determined) or accessible in an issue-tracking
tool.

• The moderator did not find more than three significant defects in a ten-minute
examination of a representative sample of the document.

12

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.4 Inspection Stages

13

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.4 Inspection Stages

14

Planning

• The author and moderator plan the
inspection together.

• They determine
• who should participate,
• what materials should the inspectors

receive prior to the inspection meeting,
• the total meeting time needed to cover the

material, and
• when the inspection should be scheduled.

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.4 Inspection Stages

15

Preparation

• The author should share background  
information with inspectors so they  
understand the context of the items being  
inspected and know the author’s objectives  
for the inspection.  

• Each inspector then examines the product to identify possible defects
and issues, using the checklist of typical requirements defects described
later.  

• Up to 75 percent of the defects found by an inspection are discovered
during preparation, so do not omit this step

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.4 Inspection Stages

16

Inspection meeting

• The reader leads the other inspectors through  
the document describes one requirement at  
a time in his own words.  

• As inspectors bring up possible defects and  
other issues, the recorder captures them in  
the action item list for the author of the requirement.  

• The meeting aims to identify as many significant defects as possible.  

• The inspection meeting should not last more than two hours; tired people are not
effective inspectors. Schedule additional meetings if you need more time to cover
all the material.

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.4 Inspection Stages

17

Rework

• Nearly every quality control activity reveals  
some defects.  

• The author should plan to spend some time  
reworking the requirements following the  
inspection meeting.  

• Uncorrected requirement defects will be expensive to fix down the road, so
this is the time to resolve the ambiguities, eliminate the fuzziness, and lay
the foundation for a successful development project.

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.4 Inspection Stages

18

Follow-up

• The moderator or a designated individual  
works with the author to ensure that all open  
issues were resolved, and errors were  
corrected properly. 

• Follow-up brings closure to the inspection process  
and enables the moderator to determine whether the inspection’s exit criteria
have been satisfied.  

• The follow-up step might reveal that some of the modifications made were
incomplete or not performed correctly, leading to additional rework

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1.5 Exit Criteria
• The inspection process should define the exit criteria that must be

satisfied before the moderator declares the entire inspection process
(not just the meeting) complete.  

• Here are some possible exit criteria for requirements inspections:

• All issues raised during the inspection have been addressed.

• Any changes in the requirements and related work products were made

correctly.

• All open issues have been resolved, or each open issue’s resolution process,

target date, and owner have been documented.

19

UWaterloo CS445/ECE451/CS645 Winter 2024

2.2 Defect Checklist
• To help reviewers look for typical errors in the products they review,

develop a defect checklist for each type of requirements document
your projects create.  

• Such checklists call the reviewers’ attention to historically frequent
requirement problems.  

• Checklists serve as reminders. 

• Over time, people will internalize the items and look for the right
issues in each review out of habit.

20

2.2 Defect Checklist

21UWaterloo CS445/ECE451/CS645 Winter 2024

2.2 Defect Checklist

22UWaterloo CS445/ECE451/CS645 Winter 2024

2.2 Defect Checklist

23UWaterloo CS445/ECE451/CS645 Winter 2024

2.3 Requirements Review Tips
• Plan the examination by inviting certain reviewers to focus on

specific sections of documents.

• Start early, when there are perhaps only 10 percent complete, not

when you think they are “done”.

• Allocate sufficient time to perform the reviews in terms of actual

hours to review (effort) and calendar time.

• Provide context for the document and the project if they are all

working on different projects.

24UWaterloo CS445/ECE451/CS645 Winter 2024

2.3 Requirements Review Tips
• Set the review scope by telling the reviewers what material to

examine, where to focus their attention, and what issues to look for.

• Limit re-reviewing the same material more than three times. If you

need someone to review it multiple times, highlight the changes so
he can focus on them.

• Prioritize review areas of high risk or functionality that will be used

frequently. Also, look for areas of the requirements with few issues
logged already.

25UWaterloo CS445/ECE451/CS645 Winter 2024

2.4 Requirements Review Challenges
• Large requirements documents

• Large inspection teams

• Geographically separated reviewers

• Unprepared reviewers

26UWaterloo CS445/ECE451/CS645 Winter 2024

3. Prototyping Requirements
• Prototypes are validation tools that make the requirements real.

• All prototypes allow you to find missing requirements before more expensive

activities like development and testing occur.

• Something as simple as a paper mock-up can be used to walk through use

cases, processes, or functions to detect omitted or erroneous requirements.

• Prototypes also help confirm that stakeholders have a shared understanding of

the requirements.

• Proof-of-concept prototypes can demonstrate that the requirements are

feasible.

• Evolutionary prototypes allow the users to see how the requirements would

work when implemented to validate that the result is what they expect.

• Additional levels of sophistication in prototypes, such as simulations, allow

more precise validation of the requirements. However, building more
sophisticated prototypes will also take more time.

27UWaterloo CS445/ECE451/CS645 Winter 2024

4. Testing The Requirements
• The simple act of designing tests will reveal many problems with the

requirements long before you can execute those tests on running
software.

• Writing functional tests crystallizes your vision of how the system

should behave under certain conditions.

• Vague and ambiguous requirements will jump out at you because you

will not be able to describe the expected system response.

• Watch out for testers who claim they cannot begin their work until

the requirements are done and testers who claim they do not need
requirements to test the software. Testing and requirements have a
synergistic relationship; they represent complementary views of the
system.

28UWaterloo CS445/ECE451/CS645 Winter 2024

4. Testing The Requirements

29UWaterloo CS445/ECE451/CS645 Winter 2024

5. Validating Requirements With Acceptance Criteria

• Customers need to assess whether a system satisfies its predefined
acceptance criteria.

• Acceptance criteria, and hence acceptance testing, should evaluate

whether the product satisfies its documented requirements and
whether it is fit for use in the intended operating environment

30UWaterloo CS445/ECE451/CS645 Winter 2024

5.1 Acceptance Criteria
• Working with customers to develop acceptance criteria provides a

way to validate both the requirements and the solution.

• Thinking about acceptance criteria offers a shift in perspective from

the elicitation question of “What do you need to do with the
system?” to “How would you judge whether the solution meets your
needs?”

• Encourage users to use the SMART mnemonic (Specific, Measurable,

Attainable, Relevant, and Time-sensitive) when defining acceptance
criteria.

31UWaterloo CS445/ECE451/CS645 Winter 2024

5.1 Acceptance Criteria
• Defining acceptance criteria is more than just saying that all the

requirements are implemented or all the tests passed.

• Specific high-priority functionality must be present and operating

correctly before the product can be accepted and used.

• Essential nonfunctional criteria or quality metrics that must be

satisfied.

• Remaining open issues and defects.

• Specific legal, regulatory, or contractual conditions. (These must be

fully satisfied before the product is considered acceptable.)

• Supporting transition, infrastructure, or other project (not product)

requirements. (Perhaps training materials must be available and data
conversions completed before the solution can be released.)

32UWaterloo CS445/ECE451/CS645 Winter 2024

5.2 Acceptance Tests
• Acceptance tests constitute the most significant portion of the acceptance

criteria.

• Creators of acceptance tests should consider the most commonly performed and

essential usage scenarios when deciding how to evaluate the software’s
acceptability.

• Automate the execution of acceptance tests whenever possible. This makes it

easier to repeat the tests when changes are made and functionality is added in
future iterations or releases.

• Acceptance tests must also address nonfunctional requirements.

• They should ensure that performance goals are achieved, that the system complies

with usability standards, and that security expectations are fulfilled.

• Do not expect user acceptance testing to replace comprehensive requirements-

based system testing, which covers all the standard and exception paths and a
wide variety of data combinations, boundary values, and other places where
defects might lurk.

33UWaterloo CS445/ECE451/CS645 Winter 2024

Final Words
• Writing requirements is not enough.

• You need to ensure they are the right requirements and good enough

to serve as a foundation for design, construction, testing, and project
management.

• Acceptance test planning, informal peer reviews, inspections, and

requirements testing techniques will help you build higher-quality
systems faster and more inexpensively than ever.

34UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Validation and Verification

35

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Temporal Logic

1

UWaterloo CS445/ECE451/CS645 Winter 2024

Background
•We learned about prescriptive specifications that describe
how a system behaves from one point to another.

• System behaviour is decomposed into states, and the
specification is described for each state

• what input the system is ready to react to in that state and

• what the system’s response to the input event will be.

•What if we want to know about longer-term system
behaviour?

2

Example
• Specification: if a car approaches the intersection, the light in its

direction will eventually be green.

• If you use what we learned, you must draw several state diagrams
covering each case in which a car approaches the intersection.

• Another approach is to use a notation designed for expressing
system-wide properties such as temporal logic.

3UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Logic
• Propositional logic expresses properties about fixed-valued variables.

• Predicate logic expresses properties about variables that change

value. A logic formula is evaluated concerning a particular
assignment of values to variables.

• In temporal logic, a formula may be evaluated over variables that

change value over time.

1. Set of typed variables

• Booleans, Integers, Sets.

• If your system is Object-Oriented, you may have variables for

object instantiations, attributes, etc.

4

UWaterloo CS445/ECE451/CS645 Winter 2024

Logic
2. Functions on typed variables:

• Integers: +, -, *, /

• Sets: ∪, ∩

• Booleans: ∧, ∨, ¬

3. Predicates

• Integers: <, >

• Sets: ⊂, ∈

4. Equality

• = (comparing two values of the same type)

5

UWaterloo CS445/ECE451/CS645 Winter 2024

Logic
5. Connectives

• ¬, ∧, ∨, →

• cond1 → cond2 ≡ ¬cond1 ∨ cond2

if cond1 then cond2 else cond3 ≡

	 	 (cond1 → cond2) ∧ (¬cond1 → cond3)

6

UWaterloo CS445/ECE451/CS645 Winter 2024

Logic
6. Quantifiers

• ∀ x ∈ T : f(x) 

For all t ∈ T: the interpretation of f with t substituted for x
evaluates to true.

• ∃ x ∈ T : f(x) 

There exists t ∈ T: the interpretation of f with t substituted for x
evaluates to true.

• Scope of a quantifier: the extent to which the quantifier applies in

the given formula. 
Without brackets, we assume that the scope extends to the right
end of the formula.

7

UWaterloo CS445/ECE451/CS645 Winter 2024

Executions
In an executing system, variables change value over time.

• a particular execution of the system is represented by a sequence of states: 
σ = S0, S1, S2, ...

8

UWaterloo CS445/ECE451/CS645 Winter 2024

Time-Dependent Logic (Timed logic)
• Many properties describe behaviour over time 

• We can think of variables as time functions whose value depends on
time.

9

UWaterloo CS445/ECE451/CS645 Winter 2024

Turnstile Example
coin: time → boolean

locked: time → boolean

push: time → boolean

enter: time → boolean

rotating: time → boolean

numEntries: time → integer

numCoins: time → integer

When writing formulas, every variable used in the formula specifies the time that
the variable’s value is referenced.

numCoins(0) = 0
coin(1) → ¬locked(2)

10

UWaterloo CS445/ECE451/CS645 Winter 2024

Turnstile Example
It is hard to write specifications in terms of what the variable values
will be at a particular point in time.

More often, one is interested in expressing the relationships between
variable values.

For example, the barrier will be unlocked when a coin is inserted

∀t ∈ Time : (coin(t) → ¬locked(t + 1))

∀t1 ∈ Time : (coin(t1) → ∃t2 ∈ Time : (t1 < t2 ∧ ¬locked(t2)))

11

Turnstile Example
It is always the case that the number of entries into the park is less
than or equal to the number of coins received.

∀t ∈ Time : (numEntries(t) ≤ numCoins(t))

12UWaterloo CS445/ECE451/CS645 Winter 2024

Turnstile Example
If a visitor pushes the turnstile and the turnstile is unlocked, then
eventually the visitor will enter the park.

∀t ∈ Time : ((push(t) ∧ ¬locked(t)) → ∃t1 ∈ Time : (t1 > t ∧ enter(t1)))

13UWaterloo CS445/ECE451/CS645 Winter 2024

Turnstile Example
If a visitor pushes the turnstile when the turnstile is unlocked, then
the turnstile rotates until the visitor enters the park.

∀t ∈ Time : ((push(t) ∧ ¬locked(t)) →
∃t1 ∈ Time : (t1 > t ∧ enter(t1) ∧

∀t2 ∈ Time : (t < t2 < t1 → rotating(t2))))

14UWaterloo CS445/ECE451/CS645 Winter 2024

Explicit vs. Implicit Time
Notice that we often do not care about the values of variables at
specific points in time. With the possible exception of time ,
when we might care about the initial values of the variables.

Mostly, we care about the temporal ordering of events and variable
values. We want to express constraints on variable values regarding
when they change value.

• If a coin is inserted, the barrier will become unlocked.

• If a caller picks up the telephone handset, he will hear a dial tone.

• If I push the elevator button, the elevator will eventually arrive at

my floor and open its doors.

t = 0

15UWaterloo CS445/ECE451/CS645 Winter 2024

Explicit vs. Implicit Time
Sometimes we care about the timing of those events.

• If a train comes within 200 meters of a railroad crossing, the gate

will be lowered within 10 seconds.

But for the most part, we are concerned only with the order in which
events occur.

16UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

LTL: Linear Temporal Logic
• Linear Temporal Logic was designed to express the temporal ordering

of events and variable values while leaving time implicit.

• In temporal logic, time progresses, but the exact time is abstracted

away. Instead, we keep track of changes to variable values and the
order in which they occur.

17

UWaterloo CS445/ECE451/CS645 Winter 2024

LTL: System State
• The system state is an assignment of values to the model’s variables.

• Intuitively, the system state is a snapshot of the system’s execution.

In this snapshot, every variable has some value.

• If we are working with an OO or UML system, then looking at a

snapshot of the system, there is an explicit number of instantiated
objects executing, each object is in exactly one state of its state
diagram, and each of its attributes has some value.

• This is one system state. If the system then executes an assignment

statement, the value of one of its variables changes. The system
enters a new system state.

18

UWaterloo CS445/ECE451/CS645 Winter 2024

LTL: System State
• There is some initial state of the system, defined by the initial values

of all the variables.

• As the system executes, the values of the variables change. Each

state represents a change from the previous state in the value of
some variable. More than one variable can change the value between
two consecutive states.

19

LTL: Executions
• A sequence of system states represents a particular execution of the

system. Time progresses during the execution, but there is no
keeping track of how long the system is in any specific state.

• An execution or a computation is a sequence of system states

σ = S0, S1, S2, …

20UWaterloo CS445/ECE451/CS645 Winter 2024

LTL: Semantics
• In linear temporal logic (LTL), formulas are evaluated concerning a

particular execution and a particular state in that execution.

• Formulas evaluated concerning a state in an execution.

21UWaterloo CS445/ECE451/CS645 Winter 2024

LTL: Ordered Time
Time is totally ordered.

∀x, y ∈ Time : ((x < y) ∨ (x = y) ∨ (y < x))

22UWaterloo CS445/ECE451/CS645 Winter 2024

LTL: Boundedness
Time is usually bounded in the past and unbounded in the future.

∃x ∈ Time : (¬∃z ∈ Time : (z < x))
∀y ∈ Time : (∃z ∈ Time : (y < z))

23UWaterloo CS445/ECE451/CS645 Winter 2024

LTL: Density
Time is continuous.

∀x, y ∈ Time : (x < y → ∃z ∈ Time : (x < z < y))

24UWaterloo CS445/ECE451/CS645 Winter 2024

Temporal Connectives
• Connectives are shorthand notations that quantify over future system

states.

• henceforth:

• eventually:

• next:

• until:

• unless:

□
◊

◯
𝒰

𝒲

25UWaterloo CS445/ECE451/CS645 Winter 2024

Henceforth

□ f = {T if f is true in the current and all future states

F otherwise

26UWaterloo CS445/ECE451/CS645 Winter 2024

Example
It is always the case that the number of entries into the park is less
than or equal to the number of coins received.

Shorthand for

, which is a shorthand for

⊧ □ (#entries ≤ #coins)

∀t ∈ Time : (#entries(t) ≤ #coins(t))
∀t ∈ Time : (t ≥ t0 → (#entries(t) ≤ #coins(t)))

27UWaterloo CS445/ECE451/CS645 Winter 2024

Eventually

◊f = {T if f is true in the current or some future state

F otherwise

28UWaterloo CS445/ECE451/CS645 Winter 2024

Note
 means that happens infinitely often.

 means that, eventually, is true forever.

⊧ □ (◊f) f

⊧ ◊(□ f) f

29UWaterloo CS445/ECE451/CS645 Winter 2024

Next

◯ f = {T if f is true in the next future state

F otherwise

30UWaterloo CS445/ECE451/CS645 Winter 2024

Example
The turnstile is unlocked whenever a coin is inserted in the next state.

⊧ □ (coin → ◯¬locked)

31UWaterloo CS445/ECE451/CS645 Winter 2024

Until

f 𝒰 g = {T if g is eventually true and f is true until g is true

F otherwise

32UWaterloo CS445/ECE451/CS645 Winter 2024

Example
Henceforth, if the barrier is pushed, then in the next state, the barrier
will be rotating until the visitor has entered.

⊧ □ (push → ◯(rotating 𝒰 enter))

33UWaterloo CS445/ECE451/CS645 Winter 2024

Unless
Unless is similar to Until, but without the guarantee that happens.

Unless is also called “weak until”.

g

f 𝒲g = {T if f is indefinitely true or f holds until g is true

F otherwise

f 𝒲g iff □ f or f 𝒰 g

34UWaterloo CS445/ECE451/CS645 Winter 2024

Note
• Until is often used to describe some (temporarily) constant system

property.

• Unless is used to describe some (temporarily) constant environmental
property.

35UWaterloo CS445/ECE451/CS645 Winter 2024

Example
Henceforth, if the turnstile is locked, it will stay locked unless a coin
is entered.

⊧ □ (locked → (locked 𝒲coin))

36UWaterloo CS445/ECE451/CS645 Winter 2024

LTL and Finite State Machines
• LTL can be used to describe properties of a finite state machine.

37UWaterloo CS445/ECE451/CS645 Winter 2024

LTL and Finite State Machines

Note: and

⊧ □ (locked → (locked 𝒲coin))
⊧ □ ((locked ∧ coin) → ◯(unlocked))
⊧ □ (unlocked → (unlocked 𝒲push))
⊧ □ ((unlocked ∧ push) → ◯(rotating))
⊧ □ (rotating → (rotating 𝒰 enter))
⊧ □ ((rotating ∧ enter) → ◯(locked))

unlocked ≢ ¬locked ¬locked ≡ rotating ∨ unlocked
38

unlockedlocked

rotating

coin

pushenter

UWaterloo CS445/ECE451/CS645 Winter 2024

LTL and Finite State Machines

⊧ □ (X → (X 𝒲(a ∨ b)))
⊧ □ ((X ∧ a) → ◯(A))
⊧ □ ((X ∧ b) → ◯(B))

39

A

X

B

a

b

UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise 1: Telephone System
• Variables:

• Users , and .

• Predicates:

• onhook(user) 	 	 user's phone is on hook

• offhook(user) 	 	 user's phone is off hook

• dialing(user) 	 	 user is dialing a number

• dial(user1, user2) 	 user1 has dialed user2 (user1 ≠ user2)

• busytone(user) 		 user hears a busy tone

• idletone(user) 	 	 user hears an idle tone

• ringtone(user)	 	 user hears a ringtone

• dialtone(user) 	 	 user hears a dial tone

• connection(user1, user2) there is a connection between the phones of users 1 and

2 (user1 ≠ user2)

u u1 u2

40UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise 1: Telephone System
1) It is always the case that the user’s phone is either on hook or off

hook. 

For any given user :
u

⊧

41UWaterloo CS445/ECE451/CS645 Winter 2024

□ (onhook(u) ∨ offhook(u))

Exercise 1: Telephone System
2) A user always needs to pick up the phone before dialing. 

 

For any given user :
u

⊧

42UWaterloo CS445/ECE451/CS645 Winter 2024

□ (¬dialing(u) 𝒲offhook(u))

Exercise 1: Telephone System
3) After picking up the phone, the user eventually either puts the

telephone back on the hook or dials. 

For any given user :
u

⊧

43UWaterloo CS445/ECE451/CS645 Winter 2024

□ (offhook(u) → ◊(dialing(u) ∨ onhook(u)))

Exercise 1: Telephone System
4) Whenever a user dials a number and hears the ring tone, a

connection will only result after the other user picks up the phone. 

For any given users and :
u1 u2

⊧

44UWaterloo CS445/ECE451/CS645 Winter 2024

□ ((dial(u1,u2) ∧ ringtone(u1)) → (¬connection(u1,u2) 𝒲offhook(u2)))

Exercise 1: Telephone System
5) Immediately after the callee hangs up on a connection, the caller

will hear an idle tone. After a time-out, the caller will hear a dial
tone.

For any given users and :
u1 u2

⊧

45UWaterloo CS445/ECE451/CS645 Winter 2024

□ ((connection(u1,u2) ∧ onhook(u2)) → (◯ idletone(u1) ∧ ◊ dialtone(u1)))

Exercise 1: Telephone System
6) Without exception, users will stay connected as long as nobody

hangs up. 

For any given users and :
u1 u2

⊧

46UWaterloo CS445/ECE451/CS645 Winter 2024

□ (connection(u1,u2) → (connection(u1,u2) 𝒰(onhook(u1) ∨ onhook(u2))))

Exercise 2: Trains Crossing
Events:

a = “A train is approaching"

c = “A train is crossing"

l = “The lights are blinking"

b = “The barrier is down"

47

Exercise 2: Trains Crossing
1) When a train is crossing, the barrier must be down. 

 

This is a safety property.

Safety properties are usually of the form

Another solution is

⊧ □ (c → b)

□ ¬bad

⊧ □ ¬(c ∧ ¬b)

48UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise 2: Trains Crossing
2) If a train is approaching or crossing, the lights must be blinking. 

 

This is a safety property.

Safety properties are usually of the form

Another solution is

⊧ □ (a ∨ c → l)

□ ¬bad

⊧ □ ¬((a ∨ c) ∧ ¬l)

49UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise 2: Trains Crossing
3) If the barrier is up and the lights are off, then no train is coming or

crossing. 

This is a safety property.

Safety properties are usually of the form

Another solution is

⊧ □ (¬b ∧ ¬l → ¬a ∧ ¬c)

□ ¬bad

⊧ □ ¬(¬b ∧ ¬l ∧ (a ∨ c))

50UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise 2: Trains Crossing
4) When a train is approaching, the train will eventually cross. 

 

This is a liveness property.

Liveness properties are usually of the form

⊧ □ (a → ◊ c)

□ (initiated → ◊terminates)

51UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise 2: Trains Crossing
5) When a train is approaching, the barrier will eventually be down

before it crosses. 

This is a liveness property.

Liveness properties are usually of the form

⊧ □ (a ∧ ¬c → ◊ ¬c 𝒲b)

□ (initiated → ◊terminates)

52UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise 2: Trains Crossing
6) If a train finishes crossing, the barrier will be eventually risen. 

 

This is a safety property.

Safety properties are usually of the form

Another solution is

⊧ □ (c ∧ ◯ ¬c → ◯◊ ¬b)

□ ¬bad

⊧ □ ¬(c ∧ ¬b)

53UWaterloo CS445/ECE451/CS645 Winter 2024

Note
• Something happens infinitely often =

• Example: The barrier is risen infinitely often =

• The dual is a latching condition =

• Example: At a given point, no more trains are approaching =

□ ◊ α
□ ◊ ¬barrier

◊ □ α

◊ □ ¬approach

54

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Temporal Logic

55

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Risk Analysis

1

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk
A risk is an uncertain factor whose occurrence may result in some loss
of satisfaction with some corresponding objective. The risk is said to
negatively impact this objective.

[van Lamsveerde, section 3.4]

• Has a likelihood to occur

• Has consequences

• Product-related risks: may result in the product’s inability to deliver the

required services or the required quality of services, including safety hazards and
security threats.

• Process-related risks: may result in delayed product delivery, cost overruns,
deterioration of project team morale, etc.

2

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk
• If risks go unrecognized or underestimated, the requirements will be

incomplete or inadequate as they will not consider such risks.

Goal: Early risk management at requirements time.

3

Risk Classification
• Software Requirement Risks

• Software Cost Risks

• Software Scheduling Risks

• Software Quality Risks

4UWaterloo CS445/ECE451/CS645 Winter 2024

Software Requirement Risks
1. Lack of analysis for change of requirements.

2. Change the extension of requirements

3. Lack of report for requirements

4. Poor definition of requirements

5. Ambiguity of requirements

6. Change of requirements

7. Inadequate requirements

8. Impossible requirements

9. Invalid requirements

5UWaterloo CS445/ECE451/CS645 Winter 2024

Software Cost Risks
1. Lack of good estimation in projects

2. Unrealistic schedule

3. The hardware does not work well

4. Human errors

5. Lack of testing

6. Lack of monitoring

7. Complexity of architecture

8. Large size of architecture

9. Extension of requirements change

10.The tools do not work well

11.Personnel change, Management change, technology change, and environment

change

12.Lack of reassessment of the management cycle

6UWaterloo CS445/ECE451/CS645 Winter 2024

Software Scheduling Risks
1. Inadequate budget

2. Change of requirements and extension of requirements

3. Human errors

4. Inadequate knowledge of tools and techniques

5. Long-term training for personnel

6. Lack of employment of manager experience

7. Lack of enough skill

8. Lack of good estimation in projects

7UWaterloo CS445/ECE451/CS645 Winter 2024

Software Quality Risks
1. Inadequate documentation

2. Lack of project standard

3. Lack of design documentation

4. Inadequate budget

5. Human errors

6. Unrealistic schedule

7. Extension of requirements change

8. Poor definition of requirements

9. Lack of enough skill

10.Lack of testing and good estimation in projects

11.Inadequate knowledge of techniques, programming language, tools, and so

on

8UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Management
Risk Management attempts to manage the degree to which a project is
exposed to risks of quality, delay, or failure.

Some tasks are to

• identify risks

• estimate the likelihood of occurrence of risks

• predict the impact of risks on the project

9

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Management

• Risk management is iterative

• countermeasures may introduce new risks

• Poor risk management is a major cause of software failure

• natural inclination to conceive over-ideal systems (nothing can go wrong)

• unrecognized, underestimated risks lead to incomplete, inadequate

requirements

Risk
identification

Risk
assessment

Risk
control

what system-specific
risks?

likely? 
severe, likely consequences?

countermeasures as
new requirements

10

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Identification: Risk Checklists
• Instantiation of risk categories to project specifics

• associated with corresponding requirements categories (cf. Chap. 1)

• Product-related risks: requirement unsatisfaction in functional or
quality requirement categories

• information inaccuracy, unavailability, unusability, poor response time,

poor peak throughput, etc.

e.g. inaccurate estimates of train speed and positions?

• Process-related risks: top 10 risks [Boehm, 1989]

• requirement volatility, personnel shortfalls, dependencies on external
sources, unrealistic schedules/budgets, etc.

• poor risk management  
e.g. Unexperienced developer team for train system?

11

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Identification: Component Inspection
• For product-related risks

• Review each component of the system-to-be: human, device,

software components

• can it fail?

• how?

• why?

• what are the possible consequences?

e.g. onboard train controller, station computer, tracking system,

 and communication infrastructure, …

• Finer-grained components lead to more accurate analysis

e.g. acceleration controller, doors controller, track sensors, ...

12

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Identification: Risk Trees
• Tree organization for causal linking of failures, causes, consequences

• Failure nodes: independent failure event or condition

• decomposable into finer-grained nodes

• Logical nodes: AND/OR, causal links through logical nodes

• AND-node: child nodes must all occur for the parent node to occur as a

consequence

• OR-node: only one child node needs to occur

13

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Tree: Example

Door opens while train moving

Train is moving OR

AND

Passenger forces
doors to open

Door actuator
fails

Speedometer
fails

Software controller fails

Wrong
requirement

Wrong
assumption

Wrong
specification

Wrong
implementation

OR

leaf node

decomposable node

14

UWaterloo CS445/ECE451/CS645 Winter 2024

Building Risk Trees: Heuristic Identification of Failure Nodes

• Checklists, component inspection identify failure nodes

• Guidewords: keyword-based patterns of failure

• NO: “something is missing”

• MORE: “there are more things than expected”

• LESS: “there are fewer things than expected”

• BEFORE: “something occurs earlier than expected”

• AFTER: “something occurs later than expected”

• But problems frequently happen due to combinations of basic failure
events / conditions.

15

Analyzing Failure Combinations: Cut Set of a Risk Tree

• Cut set of risk tree RT: set of minimal AND-combinations of RT’s leaf
nodes sufficient for causing RT’s root node

• Cut-set tree of RT: set of its leaf nodes = RT’s cut set

• Derivation of cut-set tree CST of RT:

• CST’s top node := RT’s top logical node

• If current CST node is OR-node:

expand it with RT’s corresponding alternative child nodes

• If current CST node is AND-node:

expand it in single aggregation of RT’s conjoined child nodes

• Termination when CST’s child nodes are all aggregations of leaf nodes from RT

16UWaterloo CS445/ECE451/CS645 Winter 2024

Cut Set of a Risk Tree: Derivation

17

Door opens while train moving

Train is moving OR

AND

Passenger forces
doors to open

Door actuator
fails

Speedometer
fails

Software controller fails

Wrong
requirement

Wrong
assumption

Wrong
specification

Wrong
implementation

OR

leaf node

decomposable node

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Identification: Using Elicitation Techniques
• Scenarios to point out failures from WHAT IF questions

• interactions not occurring

• interactions occurring too late

• unexpected interactions (e.g. under wrong conditions)

• Knowledge reuse: typical risks from similar systems

• Group sessions: focused on the identification of project-specific risks

18UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Assessment

• Goal: assess likelihood of risks + severity, likelihood of consequences,
to control high-priority risks

• Qualitative assessment: use qualitative estimates (levels)

• for likelihood: {very likely, likely, possible, unlikely, ...}

• for severity: {catastrophic, severe, high, moderate, ...}

• Risk likelihood-consequence table for each risk

• Risk comparison/prioritization on severity levels

19

Risk
identification

Risk
assessment

Risk
control

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

 Qualitative Risk Assessment Table: Example

20

Risk: “Doors open while train moving:

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Control

• Goal: Reduce high-exposure risks through
countermeasures

• yields new or adapted requirements

• should be cost-effective

Risk
identification

Risk
assessment

Risk
control

Risk control

Explore
countermeasures

Evaluate
countermeasures,
 select preferred

21

UWaterloo CS445/ECE451/CS645 Winter 2024

Exploring Countermeasures
• Using elicitation techniques

• interviews, group sessions

• Reusing known countermeasures

 e.g. generic countermeasures to top 10 risks [Boehm, 1989]

• simulation ✂ poor performance

• prototyping, task analysis ✂ poor usability

• use of cost models ✂ unrealistic budgets/schedules

• Using risk reduction tactics

22

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Reduction Tactics
• Reduce risk likelihood: new requirements to ensure significant decrease

e.g. “Prompts for driver reaction regularly generated by software”

• Avoid risk: new requirements to ensure risk may never occur

e.g. “Doors may be opened by software-controlled actuators only”

• Reduce consequence likelihood: new requirements to ensure significant
decrease of consequence likelihood

e.g. “Alarm generated in case of door opening while train moving”

• Avoid risk consequence: new requirements to ensure consequence may
never occur

e.g. “No collision in case of inaccurate speed/position estimates”

• Mitigate risk consequence: new requirements to reduce severity of
consequence(s)

e.g. “Waiting passengers informed of train delays”

23

UWaterloo CS445/ECE451/CS645 Winter 2024

Selecting Preferred Countermeasures

• Evaluation criteria for preferred countermeasure:

• contribution to critical non-functional requirements

• contribution to the resolution of other risks

• cost-effectiveness

• Cost-effectiveness is measured by risk-reduction leverage (RRL):

RRL (r, cm) = (Exp (r) - Exp (r|cm)) / Cost (cm)

Exp (r): exposure of risk r

Exp (r|cm): new exposure of r if countermeasure cm is selected

• Select countermeasures with the highest RRLs

• Refinable through cumulative countermeasures and RRLs.

24

UWaterloo CS445/ECE451/CS645 Winter 2024

Risks Should Be Documented
• To record/explain why these countermeasure requirements, to

support system evolution	

• For each identified risk:

• conditions/events for the occurrence

• estimated likelihood

• possible causes and consequences

• estimated likelihood and severity of each consequence

• identified countermeasures + risk-reduction leverages

• selected countermeasures

25

UWaterloo CS445/ECE451/CS645 Winter 2024

Defect Detection and Prevention (DDP)
DDP is a software tool developed by NASA

DDP Steps:

1. Identify the most critical requirements

2. Identify potential risks

3. Estimate the impact of each risk on each requirement

4. Identify possible countermeasures

5. Identify the most effective countermeasures

Result of DDP: Optimized collection of mitigating actions that
may be applied to project

26

UWaterloo CS445/ECE451/CS645 Winter 2024

Example: Meeting Scheduler
• A meeting initiator informs potential participants about the need for

a meeting and specifies a date range within which the meeting
should take place, asking them to return their scheduling constraints 

• Constraints are expressed as two sets:

• one exclusion set (dates when a participant cannot attend)

• one preference set (dates when a participant prefers to attend) 

• Initiator also asks for specific requirements of meeting room

27

UWaterloo CS445/ECE451/CS645 Winter 2024

Example: Meeting Scheduler
• All correspondence with participants is via email 

• The meeting should be scheduled within the stated date range and
not be in any exclusion sets. The date should also belong to as many
preference sets as possible, especially of the “important”
participants. 

• A new schedule cycle is required in case of a date or room conflict. 

• Conflicts can be resolved in several ways: the initiator may extend
the date range, some participants may remove dates from their
exclusion set, or some may decline the invitation to attend the
meeting.

28

UWaterloo CS445/ECE451/CS645 Winter 2024

Defect Detection and Prevention (DDP)
DDP Steps:

1. Identify the most critical requirements and their relative
importance

2. Identify potential risks, and their likelihood

3. Estimate the impact of each risk on each requirement

4. Identify possible countermeasures

5. Identify the most effective countermeasures

Goal:

• To develop a set of prioritized risks to be addressed

• Perhaps to identify which requirements are the most “risk-driving”

29

DDP Process
• Risk Consequence Table

• Risk Countermeasure Table

30UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Consequence Table

31

Risks

Requirements Weight Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Likelihood 0.4 0.3 0.1 0.3 0.5

Reduce time taken
to schedule meetings 0.5

Notify participants
when time and place
are found

0.4

Increase participant
average attendance 0.3

Reduce schedule
conflicts 0.6

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Impact Matrix

32

Risks

Requirements Weight Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Likelihood 0.4 0.3 0.1 0.3 0.5

Reduce time taken
to schedule meetings 0.5 0.6 0.8 0.2 0.7 0.2

Notify participants
when time and place
are found

0.4 0 0.8 0 1 0.2

Increase participant
average attendance 0.3 0.8 0.8 0 0.8 0.5

Reduce schedule
conflicts 0.6 0.2 1 0 0 0.7

UWaterloo CS445/ECE451/CS645 Winter 2024

Impact(risk, req) = estimate of loss of requirement

0 = no loss

1 = total loss

Loss of Objective

33

Risks

Requirements Weight Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Loss of
objective

Likelihood 0.4 0.3 0.1 0.3 0.5

Reduce time taken
to schedule
meetings

0.5 0.6 0.8 0.2 0.7 0.2 0.405

Notify participants
when time and place
are found

0.4 0 0.8 0 1 0.2 0.256

Increase participant
average attendance 0.3 0.8 0.8 0 0.8 0.5 0.315

Reduce schedule
conflicts 0.6 0.2 1 0 0 0.7 0.438

UWaterloo CS445/ECE451/CS645 Winter 2024

LossOfObjective(req) = weight(req) × ∑
risk

impact(risk,req) × likelihood(risk)

Risk Driving Requirements

34

Risks

Requirements Weight Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Loss of
objective

Likelihood 0.4 0.3 0.1 0.3 0.5

Reduce time taken
to schedule
meetings

0.5 0.6 0.8 0.2 0.7 0.2 0.405

Notify participants
when time and place
are found

0.4 0 0.8 0 1 0.2 0.256

Increase participant
average attendance 0.3 0.8 0.8 0 0.8 0.5 0.315

Reduce schedule
conflicts 0.6 0.2 1 0 0 0.7 0.438

Risk criticality 0.264 0.468 0.01 0.297 0.375

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk-driving requirements are the requirements that are most at risk of not being achieved.

Risk Criticality

35

Risks

Requirements Weight Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Loss of
objective

Likelihood 0.4 0.3 0.1 0.3 0.5

Reduce time taken
to schedule
meetings

0.5 0.6 0.8 0.2 0.7 0.2 0.405

Notify participants
when time and place
are found

0.4 0 0.8 0 1 0.2 0.256

Increase participant
average attendance 0.3 0.8 0.8 0 0.8 0.5 0.315

Reduce schedule
conflicts 0.6 0.2 1 0 0 0.7 0.438

Risk criticality 0.264 0.468 0.01 0.297 0.375

UWaterloo CS445/ECE451/CS645 Winter 2024

RiskCriticality(risk) = likelihood(risk) × ∑
req

impact(risk,req) × weight(req)

Tall Poles

36

Risks

Requirements Weight Participant does
not read e-
mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute
change

Loss of
objective

Likelihood 0.4 0.3 0.1 0.3 0.5

Reduce time taken
to schedule meetings 0.5 0.6 0.8 0.2 0.7 0.2 0.405

Notify participants
when time and place
are found

0.4 0 0.8 0 1 0.2 0.256

Increase participant
average attendance 0.3 0.8 0.8 0 0.8 0.5 0.315

Reduce schedule
conflicts 0.6 0.2 1 0 0 0.7 0.438

Risk criticality 0.264 0.468 0.01 0.297 0.375

UWaterloo CS445/ECE451/CS645 Winter 2024

Tall Poles are the most critical risks, having the most severe consequences.

DDP Process
• Risk Consequence Table

• Risk Countermeasure Table

37UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Defect Detection and Prevention (DDP)
DDP Steps:

1. Identify the most critical requirements

2. Identify potential risks, and their likelihood

3. Estimate the impact of each risk on each requirement

4. Identify possible countermeasures, and their effectiveness in
reducing risk

5. Identify the most effective countermeasures

Goal:

• Identify options for preventing or detecting risks

• Preventative measures, Analyses, Process controls, Tests, Mitigations

• Perhaps to identify the most effective countermeasures

38

UWaterloo CS445/ECE451/CS645 Winter 2024

Identify Possible Countermeasures
1. Using elicitation techniques: such as interviews, group sessions,

etc.

2. Reusing available countermeasures: Boehm(1989) listed the top ten

risks with alternative countermeasures for each.

39

Boehm’s Top 10 Risks

40

Risk Item Risk Management Technique

Personnel shortfall Staffing with top talent, job matching, team building, key personnel
agreements, cross training

Unrealistic schedules and budgets Detailed milestone cost and schedule estimation, design to cost,
incremental development, software reuse, requirements scrubbing

Developing the wrong functions and
properties

Organizational analysis, mission analysis, operations-concept formulation,
user surveys and user participation, prototyping, early user's manuals

Developing the wrong user interface Prototyping, scenarios, task analysis, user participation

Gold-plating (e.g. implementing "neat
features" not asked for by consumer)

Requirements scrubbing, prototyping, cost-benefit analysis, designing to
cost

Continuing stream of requirements
changes

High change threshold information hiding, incremental development
(deferring changes to later increments)

Shortfalls in externally-furnished
components (e.g. component reuse)

Benchmarking, inspections, reference checking, compatibility analysis

Shortfalls in externally performed tasks
(e.g. worked performed by a contractor)

Reference checking, pre-award audits, award-fee contracts, competitive
design or prototyping, team building

Real-time performance shortfalls Simulation, benchmarking, modeling, prototyping, instrumentation, tuning

Straining computer science capabilities Technical analysis, cost-benefit analysis, prototyping, reference checking

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Identify Possible Countermeasures
3. Using risk-reduction tactics

• Reduce risk likelihood

• to reduce the risk of the train’s driver falling asleep or being distracted

from controlling the acceleration process requires a prompt reaction to
being generated by the software.

• Avoid risk

• to avoid the risk of passengers forcing doors to open:

• require that the door actuator reacts to the software controller exclusively, and

• the software checks the train’s speed before responding to any opening request from

passengers.

• Reduce consequence likelihood

• the likelihood of severe injuries or loss of life in case of unexpected door

opening might be reduced by requiring the software to generate an alarm
in case doors open while the train is moving.

41

UWaterloo CS445/ECE451/CS645 Winter 2024

Identify Possible Countermeasures
3. Using risk-reduction tactics

• Avoid risk consequences

• introduce requirements that ensure that train collisions cannot occur in

case the risk of inaccurate train position or speed information occurs.

• Mitigate risk consequences

• introduce requirements that reduce the severity of consequences of this

tolerated risk. For example, request videoconferencing etc., in case of a
last-minute absence of a participant in a meeting.

42

Risk Countermeasure Table

43

Risks

Countermeasures Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Criticality 0.264 0.468 0.01 0.297 0.375

Send e-mail reminder

Change the meeting, increase
time range

Allow system to have access
to personal e-agendas

Change the meeting, fewer
constraints (equipment)

Cancel a meeting and send e-
mail confirmation

UWaterloo CS445/ECE451/CS645 Winter 2024

Countermeasure Effectiveness Matrix

44

Risks

Countermeasures Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Criticality 0.264 0.468 0.01 0.297 0.375

Send e-mail reminder 0.7 0.7 0 0.1 0

Change the meeting, increase
time range 0.2 0.2 0 0.1 0

Allow system to have access
to personal e-agendas 0.3 0.2 0.1 0.2 0.3

Change the meeting, fewer
constraints (equipment) 0 0 0.9 0 0

Cancel a meeting and send e-
mail confirmation 0.8 0.8 1 0.7 0.9

UWaterloo CS445/ECE451/CS645 Winter 2024

Effect(cm, risk) = estimate of reduction of risk

0 = no reduction

1 = risk eliminated

Combined Risk Reduction

45

Risks

Countermeasures Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Criticality 0.264 0.468 0.01 0.297 0.375

Send e-mail reminder
0.7 0.7 0 0.1 0

Change the meeting,
increase time range 0.2 0.2 0 0.1 0

Allow system to have access
to personal e-agendas 0.3 0.2 0.1 0.2 0.3

Change the meeting, fewer
constraints (equipment) 0 0 0.9 0 0

Cancel a meeting and send e-
mail confirmation 0.8 0.8 1 0.7 0.9

Combined Risk Reduction 0.966 0.962 1 0.806 0.93

UWaterloo CS445/ECE451/CS645 Winter 2024

CombinedRiskReduction(risk) = 1 − ∏ (1 − reduction(cm,risk))

Effect of Countermeasure

46

Risks

Countermeasures Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Effect of
Counter
measure

Criticality 0.264 0.468 0.01 0.297 0.375

Send e-mail reminder 0.7 0.7 0 0.1 0 0.542

Change the meeting, increase
time range 0.2 0.2 0 0.1 0 0.176

Allow system to have access
to personal e-agendas 0.3 0.2 0.1 0.2 0.3 0.346

Change the meeting, fewer
constraints (equipment) 0 0 0.9 0 0 0.009

Cancel a meeting and send e-
mail confirmation 0.8 0.8 1 0.7 0.9 1.141

Combined Risk Reduction 0.966 0.962 1 0.806 0.93

UWaterloo CS445/ECE451/CS645 Winter 2024

EffectOfCountermeasure(cm) = ∑
risk

(reduction(cm,risk) × criticality(risk))

Most Effective Countermeasure

47

Risks

Countermeasures Participant does
not read e-mails

Participant does
not reply to
requests

Room with
equipment is
not available

System response
is too close to
meeting

Important
participant has
last minute change

Effect of
Counter
measure

Criticality 0.264 0.468 0.01 0.297 0.375

Send e-mail reminder 0.7 0.7 0 0.1 0 0.542

Change the meeting, increase
time range 0.2 0.2 0 0.1 0 0.176

Allow system to have access
to personal e-agendas 0.3 0.2 0.1 0.2 0.3 0.346

Change the meeting, fewer
constraints (equipment) 0 0 0.9 0 0 0.009

Cancel a meeting and send e-
mail confirmation 0.8 0.8 1 0.7 0.9 1.141

Combined Risk Reduction 0.966 0.962 1 0.806 0.93

UWaterloo CS445/ECE451/CS645 Winter 2024

Most reduced risk Most effective countermeasure
Least effective countermeasure

DDP Process
• Risk Consequence Table

• Risk Countermeasure Table

48UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Determine Optimal Balance Risk Reduction vs.
Countermeasure Cost

• Cost of each countermeasure cm to be estimated with
domain experts.

• DDP can then visualize

• risk balance charts: residual impact of each risk on all objectives

if cm is selected

• optimal combinations of countermeasures for risk balance under

cost constraints

• simulated annealing search for near-optimal solutions

• user can set optimality criterion

e.g. “maximize the satisfaction of objectives under this cost threshold.”

 “minimize cost above this satisfaction threshold.”

49

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Documentation
• Recall: risk management is an iterative process (identify,
assess, control)

• The process should be documented:

• to provide the rationale for countermeasure requirements

• to support requirements evolution

• needed for risk monitoring at system runtime

• needed for the dynamic selection of more appropriate

countermeasures

50

Risk Documentation
• Risk document should include for each identified risk:

• The conditions or events characterizing its occurrence.

• Its estimated likelihood of occurrence.

• Its possible cause and consequences.

• The estimated likelihood and severity of each possible

consequence.

• The countermeasures that were identified together with their

respective risk-reduction leverage

• The selected subset of countermeasures.

51UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Risk Analysis

52

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Cost Estimation

1

Fundamental Estimation Questions
• How much effort is required to complete an activity?

• How much calendar time is needed to complete an activity?

• What is the total cost of an activity?

• Project estimation and scheduling and interleaved management

activities

2UWaterloo CS445/ECE451/CS645 Winter 2024

Estimation
Our job is to estimate:

1. Time to develop

2. Cost

3. Number of developers / month

3UWaterloo CS445/ECE451/CS645 Winter 2024

Why is it hard to estimate well?
It is not easy to estimate the cost and effort to build a project when
you do not know very much about that project.

• Yes, software engineering is still a relatively new field.

• We are not estimating repeatable, objective phenomena.

• The earlier the estimate (e.g., requirements phase), the less is

known about the project.

• Unlike building bridges, most of the time and effort in software

development is in creating a new design.

• A goal to estimate within 10% of the actual cost is unrealistic. 

Experience has shown that the product is almost complete when we
know enough about a project to estimate its cost to be within 10% of
its actual cost.

4UWaterloo CS445/ECE451/CS645 Winter 2024

Why estimate software cost and effort?
• To provide a basis for agreeing to a job.

• To make commitments that you can meet.

• To help you track progress. 

5UWaterloo CS445/ECE451/CS645 Winter 2024

Estimation Techniques
• Delphi Method

• Function Point Analysis

• CoCoMo

6UWaterloo CS445/ECE451/CS645 Winter 2024

Delphi Method
Delphi methods are based on expert judgment:

1. Each expert submits a secret prediction, using whatever process

each one chooses.

2. The average estimate is sent to the whole group.

3. Each expert revises their prediction privately.

4. Repeat until no expert wants to revise their estimate, i.e., until a

fixed point is reached.

7UWaterloo CS445/ECE451/CS645 Winter 2024

Function Point Analysis
• Estimating Cost based on what we know at requirements time

1. Estimate the number of function points from the requirements,

2. Estimate code size from function points, and

3. Estimate resources required (time, personnel, money) from a

code size

8

Requirements Function Points Code Size Resources

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

1. Estimate Function Points
Idea: Predict the complexity of the system in terms of the number of functions
to write

The Basic Model is:

FPs = a1EI + a2EO + a3EQ + a4EIF + a5ILF

FPs = number of function points

EI (External Inputs) = number of user inputs (data entry, input event).

EO (External Outputs) = number of user outputs (screen error messages, report).

EQ (External Inquiries) = number of user queries (request or response function
that doesn't require a change to system state).

EIF (External Interface File) = number of external interfaces (other systems,…).

ILF (Internal Logical Files) = number of internal files.

a1, a2, ..., a5 - empirically observed weights per function type

9

Weights

10

Complexity

Low Average High

External Input (EI) 3 4 6

External Output (EO) 4 5 7

External Inquiry (EQ) 3 4 6

External Interface File (EIF) 5 7 10

Logical Internal File (LIF) 7 10 15

UWaterloo CS445/ECE451/CS645 Winter 2024

2. Estimating Code Size From FPs
• There are tables that list, for each

programming language, the number of
statements in it that are required to
implement one function point.

• These tables must be calibrated for each

shop, each domain, etc.

11

Language SLOC / UFP
Ada 71
AI Shell 49
APL 32
Assembly 320
Assembly (Macro) 213
ANSI / Quick / Turbo Basic 64
Basic - Compiled 91
Basic - Interpreted 128
C 128
C++ 29
ANSI Cobol 85 91
Fortran 77 105
Forth 64
Jovial 105
Lisp 64
Modula 2 80
Pascal 91
Prolog 64
Report Generator 80
Spreadsheet 6

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Problems with KLOC
• How do you measure them?

• How do you count one line that has several statements?

• How do you count a statement that is over several lines?

• How do you count constructs, e.g., conditionals?

• One person’s line may be another’s several lines

But they are used as the unit of code size with care and with
standards that answer these questions.

12

3. Estimate Cost
COnstructive COst MOdel (COCOMO) - used to predict the cost of a
project from an estimate of its size (LOC or KLOC):

• is one of the earliest cost models widely used in cost estimation.

• was initially published in Software Engineering Economics by Dr. Barry

Boehm in 1981.

• is a regression-based model considering various historical programs’

software sizes and multipliers.

• its most fundamental calculation is using the Effort Equation to

estimate the number of developers in a month required to develop a
project.

13UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

3. Estimate Cost
COnstructive COst MOdel (COCOMO) - used to predict the cost of a project from an
estimate of its size in lines of code (LOC).

E = a × KLOCb × X

E is for Effort - estimated in man-months or person-months (the amount of work
performed by the average worker in a month)

KLOC - estimated project size (thousands of lines of code)

a, b - empirically observed weightings; depend on the type of

system being developed

X - project attribute multipliers

14

UWaterloo CS445/ECE451/CS645 Winter 2024

Project Attributes
Adjust Effort estimation according to attributes of the project:

• Product attributes (reliability, complexity): required reliability↑,

complexity↑, database size ↑

• Resource constraints (execution time, memory constraints):
execution time↑, memory↑, hardware volatility↑, tight response
time↑
• Personnel attributes (experience of developers): quality of analysts↓,

quality of programmers↓, experience with the product↓, hardware
experience↓, programming language (PL) experience↓
• Project attributes (techniques, programming languages): use of

software tools (e.g., debugger)↓, use of modern PL↓, schedule
constraints↑

15

Project Attributes

16UWaterloo CS445/ECE451/CS645 Winter 2024

Other Equations
• Development Time (D): months.

• People Required (P): people.

cEd

E/D

17

Software Project
Organic 2.5 0.38
Semi-detached 2.5 0.35
Embedded 2.5 0.32

c d

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Notes
• The FPs are calculated from the requirements and translated into

estimated LOCs, then used in the COCOMO estimation method.

• Technically, the more developers the less time it takes to finish the

project.

• Why is the formula not linear? 

18

D
ev

el
op

er
s

Time

UWaterloo CS445/ECE451/CS645 Winter 2024

Notes
• But it does not work.

• Main counter-example:

• It does work for painting a fence. Why?

• It does not work for software development teams. Why?

19

Communication in a Group Project
• At some point, a new person costs in communication more than they

add to the work that can be done.

• This is not even counting the fact that a new person wastes their own

and others’ time getting up to speed.

20UWaterloo CS445/ECE451/CS645 Winter 2024

Team size, Lines of communication

UWaterloo CS445/ECE451/CS645 Winter 2024

Communication in a Group Project
The other side of the coin is that any given project needs at
least some minimum number X of people, and if you do not
have that many people, you need to add more, even though it
will cost delays. It is a choice between delay and never
finishing.

21

Experience, Experience and Experience
• Models have to be calibrated to an organization  

Local factors include expertise, process, product type, and definition
of LOC perturb accuracy.

• 100%+ errors are normal 

A software cost estimate model is doing well if it can estimate within
20% of the actual costs and within 70% of the actual time, assuming
that the model has been calibrated to this type and size of the
project!

• Model parameters based on old projects/technology 

Weights and coefficients are based on empirical studies of past
projects using old technology and may be entirely unlike new
projects.

22UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

So why to bother?
Poor estimates may be better than no estimates:

• We need this information to negotiate the cost of the product.

• We need to plan for the project.

• to determine how many developers to hire or to assign to this project,

• to know how long they’ll be dedicated to this project and not to others

• We cannot control what we cannot measure.

Our estimation ability improves with practice and experience.

Do not get too caught up in an estimate. It is wrong. You will get
better, but you will never master the problem.

23

UWaterloo CS445/ECE451/CS645 Winter 2024

So why to bother?
• Some people will be better at estimating than others.

Cost estimation is not a science.

It’s an art based on intuition and experience.

Be wary of any method or tool vendor that claims to predict cost or
effort to unrealistic precision, i.e., more than one significant digit!

24

UWaterloo CS445/ECE451/CS645 Winter 2024

Cross-checks and Validation
• After an estimate has been created, the next step involves validating

the estimate by cross-checking.

• Cross-checking means using a different approach to create the estimate.

• If both estimates are close, the target estimate has some validity.

• If both estimates are very different.

• This increases the uncertainty level, which must be reflected in a risk analysis.

• This may lead to another estimating method to increase cost estimate confidence.

• It is a good practice to cross-check significant cost drivers.

• If time is available, cross-checking other cost elements can further validate

the estimate.

25

UWaterloo CS445/ECE451/CS645 Winter 2024

Cross-checks and Validation
• Validation also includes a demonstration that:

• The data relationships are logical,

• The data used are credible/convincing,

• Model users have sufficient experience and training,

• Calibration processes are thoroughly documented,

• Formal estimating policies and procedures are established, and

• When applicable, information system controls are maintained to

ensure the integrity of the used models.

26

UWaterloo CS445/ECE451/CS645 Winter 2024

Cost Estimating Challenges
• Access to historical data

• Need to invest in database capture of historical costs and technical data for
proper CER development

• Costly, time-consuming, and usually not funded

• Development costs for IT systems can quickly become outdated by new programming

languages

• Maintenance costs are even more challenging to capture because they are seen as

ongoing support or overhead and not as metrics

• System architecture change effects on cost estimates can be hard to determine 

• Validity and uncertainty of data

• Garbage in = Garbage out

27

UWaterloo CS445/ECE451/CS645 Winter 2024

Cost Estimating Challenges
• Limited time to develop estimates

• Can result in rough-order magnitude costs being used as budget quality
estimates

• Cause necessary steps like validation and Monte Carlo simulation to be

omitted 

• Resources

• Lack of trained people is a problem

28

Why you underestimate by an order of magnitude
Fred Brook observes:

• Everybody thinks program when they should think of software system

product.

• Program - what you write for yourself (and thus what you know)

• System - a program that interfaces with other programs, directly or

indirectly, costs three times as much as a central program (more stuff
to write)

• Product - a program written for others that must therefore be robust,

costs three times as much as a central program

• Software system product - a program that is system and product costs

nine times as much as a central program

29UWaterloo CS445/ECE451/CS645 Winter 2024

COCOMO - Constructive Cost Model

• COCOMO II - Constructive Cost Model

• http://softwarecost.org/tools/COCOMO/

• COCOMO III - Constructive Cost Model

• https://boehmcsse.org/tools/cocomo-iii/

• https://www.youtube.com/watch?v=5sxKi-QsIOU

30

http://softwarecost.org/tools/COCOMO/
https://boehmcsse.org/tools/cocomo-iii/
https://www.youtube.com/watch?v=5sxKi-QsIOU

UWaterloo CS445/ECE451/CS645 Winter 2024

“The models are just there to help, not to make the
management decisions for you.”

-- Barry Boehm

31

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Cost Estimation

32

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Prioritizing Requirements

Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 2010.

1

Why prioritize requirements?
• When customer expectations are high, and timelines are short.

• When you need to make sure the product delivers the most critical or

valuable functionality as early as possible.

• It is a way to deal with competing demands for limited resources.

• It is a critical strategy for agile or other projects that develop

products through a series of fixed-schedule timeboxes.

• On every project, a project manager must balance the desired

project scope against the constraints of schedule, budget, staff, and
quality goals.

• to drop, or to defer to a later release, low-priority requirements

when new, more essential requirements are accepted or when
other project conditions change.

2UWaterloo CS445/ECE451/CS645 Winter 2024

Some Prioritization Pragmatics
Successful prioritization requires an understanding of six issues:

1. The needs of the customers

2. The relative importance of requirements to the customers

3. The timing at which capabilities need to be delivered

4. Requirements that serve as predecessors for other requirements and

other relationships among requirements

5. Which requirements must be implemented as a group

6. The cost to satisfy each requirement

3UWaterloo CS445/ECE451/CS645 Winter 2024

Stakeholders May Resist
To encourage stakeholders to acknowledge that some requirements
have lower priority, the analyst can ask questions such as the following:

• Is there some other way to satisfy the need that this requirement

addresses?

• What would the consequences be of omitting or deferring this

requirement?

• What effect would it have on the project’s business objectives if this

requirement was not implemented for several months?

• Why might customers be unhappy if this requirement was deferred to

a later release?

• Is having this feature worth delaying the release of all of the other

features with this same priority?

4UWaterloo CS445/ECE451/CS645 Winter 2024

Some Prioritization Techniques
• In or Out

• Three-Level Scale

• MoSCoW

• Cost-Value Approach

5UWaterloo CS445/ECE451/CS645 Winter 2024

In or Out
• Simple

• Group of stakeholders

• Binary decision

• Keep referring to the project’s business objectives

6UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Three-Level Scale
• Consider the two dimensions of importance and urgency

7

Prioritize Iteratively
• Sometimes, particularly on a large project, you might want to

perform prioritization iteratively.

8UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

MoSCoW
The four capitalized letters in the MoSCoW prioritization scheme stand
for four possible priority classifications for the requirements in a set.

• Must: The requirement must be satisfied for the solution to be

considered a success.

• Should: The requirement is essential and should be included in the

solution if possible, but it’s not mandatory for success.

• Could: It’s a desirable capability that could be deferred or

eliminated. Implement it only if time and resources permit.

• Won’t: This indicates a requirement that will not be implemented at

this time but could be included in a future release.

9

UWaterloo CS445/ECE451/CS645 Winter 2024

Cost-Value Approach
Want to sort requirements by their potential value and cost?

• Value is a requirement’s potential contribution to customer satisfaction

• Cost is the cost of implementing the requirement

• Can prioritize requirements according 

to their cost-value ratios

• absolute values and costs are complex to  

estimate

• relative comparisons are easier

• Based on the Analytic Hierarchy 
Process (AHP); an approach for 
supporting decision-making.

• It includes five steps. 

10

UWaterloo CS445/ECE451/CS645 Winter 2024

Step I:
The requirements engineers review the candidate requirements to
ensure that the requirements are complete and clearly defined.

11

UWaterloo CS445/ECE451/CS645 Winter 2024

Step II:
Customers and users determine the relative value of each requirement
using the pairwise comparison method of the AHP, which includes five
steps.

step 1: compare pairs of requirements

• 1 - requirements are of equal value

• 3 - one is slightly preferred over the other

• 5 - one is strongly preferred over the other

• 7 - one is very strongly preferred over the other

• 9 - one is highly preferred over the other

• Intermediate values 2, 4, 6, and 8 used when 

compromise is needed

• if pair (x,y) has relative value n, complementary  

pair (y,x) has reciprocal value 1/n

12

Averaging Over Normalized Columns

13UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Checking Consistency
The consistency Index is the first indicator of the result accuracy of
the pairwise comparison.

14

Checking Consistency

15UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Checking Consistency

16

UWaterloo CS445/ECE451/CS645 Winter 2024

Step III:
Perform Step II of AHP to estimate relative cost

17

UWaterloo CS445/ECE451/CS645 Winter 2024

Step IV:
Create a cost-value diagram  
where the value is depicted on  
the y-axis, and the cost is  
depicted on the x-axis.

18

UWaterloo CS445/ECE451/CS645 Winter 2024

Step V:
Stakeholders use the cost-value diagram as a conceptual map for
analyzing and discussing the requirements.

19

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Prioritizing Requirements

Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 2010.

20

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Requirements Negotiation and
Conflict Management

Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 2010.

1

UWaterloo CS445/ECE451/CS645 Winter 2024 2

UWaterloo CS445/ECE451/CS645 Winter 2024

Overview
One goal of the requirement engineering process is to establish
sufficient agreement among the stakeholders regarding the already
known requirements for the system.

You achieve this goal by:

• Identifying conflicts

• Analyzing conflicts

• Resolving conflicts

• Documenting conflict resolutions

Those activities are mainly supported by the following:

• Win-Win approach

• Interaction matrix

3

UWaterloo CS445/ECE451/CS645 Winter 2024

Conflict in Requirements Engineering
• Exists if the needs and wishes of different stakeholders regarding the

system contradict each other or if some needs and desires cannot be
considered.

• Examples:

• Maintenance staff of an email system demand that the incoming and outgoing
emails are recorded in the log file to support the system, while users demand
high confidentiality of the exchanged emails.

• Some stakeholders demand radar sensors for distance measurement, while

others demand ultrasound sensors.

• some stakeholders demand that safety information for drivers be displayed on

a head-up display, while others think it could distract drivers and reject this
requirement.

4

UWaterloo CS445/ECE451/CS645 Winter 2024

Conflict in Requirements Engineering
• Risks: unresolved conflicts may cause

• stakeholders to no longer support the development of the system, or

• a failure of the development of the system

• Conflicts should be treated as a source of

• new ideas

• innovative requirements

• To resolve conflict:

• involve the relevant stakeholders to resolve.

• involve software architects, developers, and testers to be trained to report

(not to resolve) detected conflicts.

• Both jointly should resolve the conflicts.

5

UWaterloo CS445/ECE451/CS645 Winter 2024

Use of Goals and Scenarios
• First, identify conflicts at the goal level as far as possible, then

document, analyze, and resolve them at that level as far as possible.

• Conflict analysis benefits from using scenarios: a scenario can clarify

conflict by describing the sequence of interactions in which the
conflict occurs.

• Scenarios can be used to discuss how to reduce the conflict or avoid

it altogether.

• Stakeholders can evaluate different scenarios and choose the ones

that offer the best solution.

6

UWaterloo CS445/ECE451/CS645 Winter 2024

Activities of Conflict Management
1. Identifying conflicts

2. Analyzing conflicts

3. Resolving conflicts

4. Documenting conflict resolutions

7

UWaterloo CS445/ECE451/CS645 Winter 2024

1. Identifying Conflicts
• Conflicts about requirements may surface during all requirement

engineering activities, such as:

• during elicitation in workshops

• during documenting the requirements that have been elicited during different

interviews

• during prioritization of requirements (different opinions)

• during requirements validation (some consider requirement correct, and

others object to it).

• during conflict resolution, a new conflict identified

8

UWaterloo CS445/ECE451/CS645 Winter 2024

2. Analyzing Conflicts
• Goal: to determine the conflict types

• Resolving the conflict depends on the type

• One suggestion for classifying the conflicts is

• Data conflict

• Interest conflict

• Value conflict

9

UWaterloo CS445/ECE451/CS645 Winter 2024

2.1 Data Conflict
Caused by:

• a lack of information

• misinformation

• different interpretations of an issue

Example: The following requirement is defined for a car entertainment
system:

R4: The DVD player shall be able to handle re-writeable CDs (CD-RW)
and DVDs (DVD-RW).

A stakeholder disagrees with the requirement. In his opinion, it does
not make sense for a DVD player in the car to be able to write data
onto CDs or DVDs

10

UWaterloo CS445/ECE451/CS645 Winter 2024

2.2 Interest Conflict
It exists if:

• stakeholders’ interests or goals about the system contradict each other.

Example:

Stakeholder#1: wants the car entertainment system to include Mp3
functionality, an optional hard disk, and a USB interface to attract
technology-oriented customers.

Stakeholder#2: wants the system to be equipped with a CD player and
radio. His goal is to reduce costs to attract price-conscious customers.

11

UWaterloo CS445/ECE451/CS645 Winter 2024

2.3 Value Conflict
It exists if:

• different stakeholders evaluate a requirement differently

• each stakeholder considers the importance of the requirement differently

The evaluation of facts is affected by the following:

• experience in life

• profession

• education

• training

• personal ideals

• culture

• religion

• and other characteristics.

12

UWaterloo CS445/ECE451/CS645 Winter 2024

2. Analyzing Conflicts
The type of conflict can be determined by the following three steps (in
this order):

1. Checking for a data conflict: based on misinterpretations or

incorrect information. Ask stakeholders to write their
interpretation of the requirements to detect a potential conflict.

2. Checking for an interest conflict: based on different goals. Ask
stakeholders to name their goals associated with the conflicting
requirements. Document the goals of each stakeholder separately
in a goal model. Compare the models to detect the conflict.

13

UWaterloo CS445/ECE451/CS645 Winter 2024

2. Analyzing Conflicts
3. Checking for a value conflict: based on different values. Check the
stakeholders’ evaluation backgrounds (find out why they evaluate the
requirements the way they do).

14

UWaterloo CS445/ECE451/CS645 Winter 2024

3. Resolving Conflicts
One of the following three basic strategies can be applied:

1. Negotiation

2. Creative Solution

3. Decision

15

UWaterloo CS445/ECE451/CS645 Winter 2024

3.1 Negotiation
• Exchange of arguments

• Agreement upon a solution

• Advantage: the viewpoints of all parties are considered, and a win-

win situation is created. (I will talk about it later)

• Disadvantage: it can be time-consuming, and the compromise may

not be the best solution from an objective viewpoint.

16

UWaterloo CS445/ECE451/CS645 Winter 2024

3.2 Creative Solution
• Discard the old solutions

• Develop creative, novel solutions

• Advantage: all parties come off as winners, as solutions are

acceptable to all parties

• Disadvantage: The process can be time-consuming (to develop

creative, novel solutions) and might impact other requirements
influenced by the solutions.

17

UWaterloo CS445/ECE451/CS645 Winter 2024

3.3 Decision
• Complete agreement is rarely achievable. Conflict must be resolved

in due time by a decision-maker.

• Decision-maker: higher authority, project leader, client

representative, etc.

• Advantage: can be quick, without consuming too many resources.

• Disadvantage: there are cases where there is no higher authority.

Usually, the decision is made favouring one viewpoint while ignoring
the others.

• (Alt) Voting: on the viewpoints of all involved stakeholders

18

UWaterloo CS445/ECE451/CS645 Winter 2024

Negotiation Techniques
1. Win-Win approach: All stakeholders become winners

2. Interaction matrix: Visualizing overlapping and conflict about

requirements.

19

UWaterloo CS445/ECE451/CS645 Winter 2024

Win-Win approach
1. Understand how stakeholders want to win: what is considered a

benefit?

2. Raise adequate/realistic expectations by:

1. Joint discussion about stakeholders’ expectations to identify wrong or
unrealistic expectations.

2. putting oneself in the other stakeholders’ place to improve understanding
of their viewpoints.

3. Expectations shall be defined based on objective criteria.

4. Expectations shall be oriented towards experience (e.g. benchmarks,

expert knowledge).

3. Win-win approach is beneficial for negotiation and creative solution

strategies.

4. Resolving a conflict through a decision generally leads to a win-lose

situation since it is typically made in favour of a single viewpoint.

20

UWaterloo CS445/ECE451/CS645 Winter 2024

Interaction matrix
• Each cell represents a pair of requirements and describes their

interaction.

• Values of cells:

• 1: if the conflict exists

• 1,000: if the requirements overlap

• 0: if the requirements are independent of each other

• Analysis:

• calculate the sum of each column

• if the sum=0 for a column: the req. represented by this column doesn’t

overlap or conflict with any other requirements

• #overlaps= sum div 1000

• #conflicts= sum module 1000 (remainder of sum/1000)

21

UWaterloo CS445/ECE451/CS645 Winter 2024

Example
R1 R2 R3 R4

R1 0 0 1 1

R2 0 0 0 0

R3 1 0 0 1,000

R4 1 0 1,000 0

Sum 2 0 1,001 1,001

22

UWaterloo CS445/ECE451/CS645 Winter 2024

Summary
One goal of the requirement engineering process is to establish
sufficient agreement among the stakeholders regarding the already
known requirements for the system.

You achieve this goal by:

• Identifying conflicts

• Analyzing conflicts

• Resolving conflicts

• Documenting conflict resolutions

Those activities are mainly supported by the following:

• Win-Win approach

• Interaction matrix

23

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Requirements Negotiation and
Conflict Management

Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 2010.

24

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Quality Requirements

1

Overview
• There is more to software success than just delivering the
proper functionality.

• Users also have expectations, often unstated, about how well
the product will work.

• how easy it is to use,

• how quickly it executes,

• how rarely it fails,

• how it handles unexpected conditions,

• perhaps, how loud it is.

• Such characteristics, collectively known as quality attributes,
quality factors, quality requirements, quality of service
requirements.

2UWaterloo CS445/ECE451/CS645 Winter 2024

Overview
• Quality attributes can distinguish a product that merely does what it

is supposed to do from one that delights its users.

• Excellent products reflect an optimum balance of competing quality

characteristics.

• If you do not explore the customers’ quality expectations during

elicitation, you are lucky if the product satisfies them.

• Disappointed users and frustrated developers are the more typical outcome.

• Quality attributes serve as the origin of many functional
requirements.

• They also drive significant architectural and design decisions.

• It’s far more costly to re-architect a completed system to achieve essential
quality goals than to design for them at the outset.

3UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Software Quality Attributes

4

UWaterloo CS445/ECE451/CS645 Winter 2024

Software Quality Attributes

5

Software Quality Requirements

6UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Trade-offs
• In an ideal universe, every system would exhibit the maximum

possible value for all its attributes.

• The system would be available at all times, would never fail, would

supply instantaneous results that are always correct, would block all
attempts at unauthorized access, and would never confuse a user.

• In reality, trade-offs and conflicts between specific attributes make

it impossible to maximize all of them simultaneously.

• Because perfection is unattainable, you must determine which

attributes are most important to your project’s success. Then you can
craft specific quality objectives for these essential attributes so
designers can make appropriate choices.

7

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples of Quality Requirements
• The interface shall be user friendly

• The system should be available the vast majority of the time

• The user shall be able to learn to use the system very quickly

8

UWaterloo CS445/ECE451/CS645 Winter 2024

Fit criteria
Fit criteria express quality requirements in a way that makes it
possible, objectively, to divide solutions into those that are acceptable
and those that are not.

A fit criterion quantifies the extent to which a quality requirement
must be met.

9

UWaterloo CS445/ECE451/CS645 Winter 2024

Example: Measuring Reliability
Reliability can be defined as a percentage likelihood of success,
downtime, the absolute number of failures, …

Example: Telephone network

The entire network can fail no more than, on average, 5 minutes per

Year, but failures of individual switches can fail up to 2 hours per

Year.

Example: Patient monitoring system

The system may fail for up to 1 hour per year, but

doctors or nurses should be alerted of the failure in those cases. More frequent

failure of individual components is unacceptable.

10

Richer Fit Criteria

11

Requirement Outstanding Target Minimum

Response Time 0.1s 0.5s 1s

CPU Utilization 20% 25% 30%

Usability 40 tasks/hour 30 tasks/hour 20 tasks/hour

UWaterloo CS445/ECE451/CS645 Winter 2024

Fit Criteria - Measurement
• The hardest part of testing a requirement against an agreed-upon

measurement is defining the appropriate measure for the
requirement.

• Example:

• Stakeholder asks for a “nice” product. How to measure “nice”?

• Need measurement of niceness!

• Must be agreeable to stakeholder.

• Once you define how to measure “niceness”, you can define a
requirement to build the product agreeably.

12

UWaterloo CS445/ECE451/CS645 Winter 2024

So how to measure nice ?
• Interrogate users and find:

• nice => “liked by staff members”

• “liked by staff members” => “take to product instinctively” and

“don’t hesitate to use”

•We can measure the duration of hesitation!

• If our stakeholder agrees, we now have a good measurement
for “nice.”

13

UWaterloo CS445/ECE451/CS645 Winter 2024

If you can’t quantify
something, it cannot be a
requirement.

14

UWaterloo CS445/ECE451/CS645 Winter 2024

External Quality Attributes
• Availability

• Installability

• Integrity

• Interoperability

• Performance

• Reliability

• Robustness

• Safety

• Security

• Usability

15

UWaterloo CS445/ECE451/CS645 Winter 2024

Availability
• Availability measures the planned-up time during which the system’s

services are available for use and fully operational.

• Formally, availability equals the uptime ratio to the sum of uptime

and downtime.

AVL-1. The system shall be at least 95 percent available on weekdays between
6:00 A.M. and midnight Eastern Time and at least 99 percent available on
weekdays between 3:00 P.M. and 5:00 P.M. Eastern Time. 

AVL-2. Downtime excluded from the calculation of availability consists of
maintenance scheduled from 6:00 P.M. Sunday Pacific Time through 3:00 A.M.
Monday Pacific Time.

16

UWaterloo CS445/ECE451/CS645 Winter 2024

Installability
• Installability describes how easy it is to perform these operations

correctly.  
 

• Increasing a system’s installability reduces the time, cost, user
disruption, error frequency, and skill level needed for an installation
operation.

17

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples:
INS-1. An untrained user shall be able to successfully perform an initial
installation of the application in an average of 10 minutes. 

INS-2. When installing an upgraded application version, all customizations in the
user’s profile shall be retained and converted to the new version’s data format if
needed. 

INS-3. The installation program shall verify the correctness of the download
before beginning the installation process. 

INS-4. Installing this software on a server requires administrator privileges. 

INS-5. Following successful installation, the installation program shall delete all
temporary, backup, obsolete, and unneeded files associated with the application.

18

UWaterloo CS445/ECE451/CS645 Winter 2024

Integrity
• Integrity deals with preventing information loss and preserving the

correctness of data entered into the system.  

• Integrity requirements have no tolerance for error: the data is either
in good shape and protected or not.  

• Data integrity also addresses the accuracy and proper formatting of
the data

19

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples:
INT-1. After a file backup, the system shall verify the backup copy against the
original and report any discrepancies. 

INT-2. The system shall protect against the unauthorized addition, deletion, or
modification of data. 

INT-3. The Chemical Tracking System shall confirm that an encoded chemical
structure imported from third-party structure-drawing tools represents a valid
chemical structure. 

INT-4. The system shall confirm daily that the application executables have not
been modified by adding unauthorized code.

20

UWaterloo CS445/ECE451/CS645 Winter 2024

Interoperability
• Interoperability indicates how readily the system can exchange data

and services with other software systems and how easily it can
integrate with external hardware devices.

IOP-1. The Chemical Tracking System shall be able to import any valid chemical
structure from the ChemDraw (version 13.0 or earlier) and MarvinSketch (version
5.0 or earlier) tools. 

IOP-2. The Chemical Tracking System shall be able to import any chemical
structure encoded using the SMILES (simplified molecular-input line-entry system)
notation.

21

Performance
• Some aspects of performance

22UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples:
PER-1. Authorization of an ATM withdrawal request shall take no more than 2.0
seconds.

PER-2. The anti-lock braking system speed sensors shall report wheel speeds every
two milliseconds with a variation not to exceed 0.1 milliseconds.

PER-3. Webpages shall fully download in an average of 3 seconds or less over 30
megabits/second Internet connection.

PER-4. At least 98 percent of the time, the trading system shall update the
transaction status display within 1 second after the completion of each trade.

23

UWaterloo CS445/ECE451/CS645 Winter 2024

Reliability
• The probability of the software executing without failure for a

specific period.

• Ways to specify and measure software reliability include:

• the percentage of operations that are completed correctly,

• the average length of time the system runs before failing (mean time

between failures, or MTBF), and

• the maximum acceptable probability of a failure during a given period.

REL-1. At most, five experimental runs out of 1,000 can be lost because of
software failures.

REL-2. The mean time between failures of the card reader component shall be at
least 90 days.

24

UWaterloo CS445/ECE451/CS645 Winter 2024

Monte Carlo Techniques
Monte Carlo techniques: estimate an unknown quantity using a known
amount.

25

UWaterloo CS445/ECE451/CS645 Winter 2024

Monte Carlo Techniques
We can use Monte Carlo techniques to estimate the number of

bugs remaining in a program (reliability).

• Plant a known number of errors into the program which the testing team does
not know about.

• Then compare the number of seeded errors the team detects with the total

number of errors it detects to estimate the total number of bugs in the
program.

26

UWaterloo CS445/ECE451/CS645 Winter 2024

Problems with this approach:
• Not all bugs are equal

• some are more difficult to find/detect than others

• some are more difficult to seed than others

• some have a more significant negative impact than others

• Fixing bugs will create more bugs

27

Robustness
• The degree to which a system functions correctly when confronted with

invalid inputs, defects in connected software or hardware components,
external attacks, or unexpected operating conditions.

• Other attribute terms associated with robustness are:

• fault tolerance

• survivability

• recoverability

ROB-1. If the text editor fails before the user saves the file, it shall recover the
contents of the file being edited as of, at most, one minute before the failure the
next time the same user launches the application.

ROB-2. All plot description parameters shall have default values specified, which
the Graphics Engine shall use if a parameter’s input data is missing or invalid.

28UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Safety
• The need to prevent a system from doing any injury to people or

damage to property.

• Might be dictated by government regulations or other business rules,

and legal or certification issues could be associated with satisfying
such requirements.

• Safety requirements frequently are written in the form of conditions

or actions the system must not allow to occur. 

SAF-1. The user shall be able to see a list of all ingredients in any menu items,
with highlighted ingredients known to cause allergic reactions in more than 0.5
percent of the North American population. 

SAF-2. If the reactor vessel’s temperature rises faster than 5°C per minute, the
Chemical Reactor Control System shall turn off the heat source and signal a
warning to the operator.

29

UWaterloo CS445/ECE451/CS645 Winter 2024

Security
• Security deals with blocking unauthorized access to system functions

or data, ensuring that the software is protected from malware
attacks, and so on.

• Some considerations to examine when eliciting security requirements:

• User authorization or privilege levels and user access controls

• User identification and authentication

• Data privacy

• Deliberate data destruction, corruption, or theft

• Protection against viruses, worms, Trojan horses, spyware, rootkits, and other

malware

• Firewall and other network security issues

• Encryption of secure data

• Building audit trails of operations performed and access attempts

30

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples:
• SEC-1. The system shall lock a user’s account after four unsuccessful login

attempts within five minutes.

• SEC-2. The system shall log all attempts to access secure data by users having

insufficient privilege levels.

• SEC-3. A user shall have to change the temporary password assigned by the security

officer to a previously unused password immediately following the first successful
login with the temporary password.

• SEC-4. A door unlocks that results from a successful security badge read shall keep

the door unlocked for 8.0 seconds, with a tolerance of 0.5 seconds.

• SEC-5. The resident antimalware software shall quarantine any incoming Internet

traffic that exhibits characteristics of known or suspected virus signatures.

• SEC-6. The magnetometer shall detect at least 99.9 percent of prohibited objects,

with a false positive rate not to exceed 1 percent.

• SEC-7. Only users who have Auditor access privileges shall be able to view

customer transaction histories.

31

UWaterloo CS445/ECE451/CS645 Winter 2024

Usability
• Usability addresses the countless factors that constitute what people

describe colloquially as user-friendliness, ease of use, and human
engineering.

32

Possible Design Approaches for Ease of Learning and Ease of Use

33UWaterloo CS445/ECE451/CS645 Winter 2024

Usability
• Usability indicators include:

• The average time needed for a specific type of user to complete a

particular task correctly.

• How many transactions can the user complete correctly in a given period?

• What percentage of tasks can the user complete correctly without needing

help?

• How many errors the user makes when completing a task?

• How many tries it takes the user to accomplish a particular task, like

finding a specific function buried somewhere in the menus?

• The delay or wait time when performing a task.

• The number of interactions (mouse clicks, keystrokes, touch-screen

gestures) required to get to a piece of information or to accomplish a task.

34UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples
USE-1. A trained user shall be able to submit a request for a chemical from a
vendor catalogue in an average of three minutes and a maximum of five minutes,
95 percent of the time.

USE-2. All functions on the File menu shall have defined shortcut keys that use
the Control key pressed simultaneously with one other. Menu commands
appearing in Microsoft Word shall use the same default shortcut keys Word uses.

USE-3. 95 percent of chemists who have never used the Chemical Tracking System
before shall be able to request a chemical correctly within 15 minutes of
orientation.

35

UWaterloo CS445/ECE451/CS645 Winter 2024

Internal quality attributes
• Efficiency

• Modifiability

• Portability

• Reusability

• Scalability

• Verifiability

36

UWaterloo CS445/ECE451/CS645 Winter 2024

Efficiency
• Efficiency is closely related to the external quality attribute of

performance.

• Efficiency measures how well the system utilizes processor capacity, disk

space, memory, or communication bandwidth.

• If a system consumes too much of the available resources, users will

encounter degraded performance.

EFF-1. At least 30 percent of the processor capacity and memory available
to the application shall be unused at the planned peak load conditions.

EFF-2. The system shall warn the operator when the user load exceeds 80
percent of the maximum planned capacity.

37

UWaterloo CS445/ECE451/CS645 Winter 2024

Modifiability
• Modifiability addresses how easily the software designs and code can

be understood, changed, and extended.

• Some aspects of modifiability

38

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples
MOD-1. A maintenance programmer experienced with the system shall be able to
modify existing reports to conform to revised chemical-reporting regulations from
the federal government with 10 hours or less of development effort.

MOD-2. Function calls shall not be nested more than two levels deep.

SUP-1. A certified repair technician shall be able to replace the scanner module in
no more than 10 minutes.

SUP-2. The printer shall display an error message if replacement ink cartridges
were not inserted in the proper slots.

39

UWaterloo CS445/ECE451/CS645 Winter 2024

Portability
• The effort needed to migrate software from one operating

environment to another.

• The ability to internationalize and localize a product.

• Portability has become increasingly important as applications must

run in multiple environments, such as Windows, Mac, and Linux; iOS
and Android; and PCs, tablets, and phones. Data portability
requirements are also necessary. 

POR-1. Modifying the iOS version of the application to run on Android devices
shall require changing at most 10 percent of the source code.

POR-2. The user shall be able to port browser bookmarks to and from Firefox,
Internet Explorer, Opera, Chrome, and Safari.

POR-3. The platform migration tool shall transfer customized user profiles to the
new installation without user action.

40

UWaterloo CS445/ECE451/CS645 Winter 2024

Reusability
• The relative effort required to convert a software component for other

applications.

• Reusable software must be modular, well documented, independent of a

specific application and operating environment, and somewhat generic in
capability.

• Reusability goals are challenging to quantify. Specify which elements of

the new system need to be constructed in a manner that facilitates their
reuse.

REU-1. The chemical structure input functions shall be reusable in other object code-
level applications.

REU-2. At least 30 percent of the application architecture shall be reused from the
approved reference architectures.

REU-3. The pricing algorithms shall be reusable by future store-management
applications.

41

UWaterloo CS445/ECE451/CS645 Winter 2024

Scalability
• Scalability requirements address the applicant’s ability to grow to

accommodate more users, data, servers, geographic locations,
transactions, network traffic, searches, and other services without
compromising performance or correctness.

SCA-1. The capacity of the emergency telephone system must be able to be
increased from 500 calls per day to 2,500 calls per day within 12 hours.

SCA-2. The website shall be able to handle a page-view growth rate of 30 percent
per quarter for at least two years without user-perceptible performance
degradation.

SCA-3. The distribution system shall accommodate up to 20 new warehouse
centers.

42

UWaterloo CS445/ECE451/CS645 Winter 2024

Verifiability
• More narrowly referred to as testability, verifiability refers to how

well software components or the integrated product can be
evaluated to demonstrate whether the system functions as expected.

• Designing for verifiability is critical if the product has complex

algorithms and logic or contains subtle functionality
interrelationships.

• Verifiability is also essential if the product is often modified because

it will undergo frequent regression testing to determine whether the
changes damaged any existing functionality.

• Designing software for verifiability means making it easy to place the

software into the desired pretest state, provide the necessary test
data, and observe the test result.

43

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples
VER-1. The development environment configuration shall be identical to the test
configuration environment to avoid irreproducible testing failures.

VER-2. A tester shall be able to configure which execution results are logged
during testing.

VER-3. The developer shall be able to set the computational module to show the
interim results of any specified algorithm group for debugging purposes.

VER-4. The maximum cyclomatic complexity of a module shall not exceed 20.

Cyclomatic complexity measures the number of logic branches in a source code
module. Adding more branches and loops to a module makes it harder to
understand, test, and maintain.

44

Quality Attributes Trade-offs

45UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Constraints
• A constraint places restrictions on the design or implementation

choices available to the developer. 

• External stakeholders can impose constraints. These other systems
interact with the one you are building or maintaining or other life
cycle activities for your systems, such as transition and maintenance.  

• Other constraints result from existing agreements, management, and
technical decisions (ISO/IEC/IEEE 2011).

46

Constraints
• Sources of constraints include:

• Specific technologies, tools, languages, and databases that must be used or

avoided.

• Restrictions because of the product’s operating environment or platform,

such as the types and versions of web browsers or operating systems used.

• Required development conventions or standards. (For instance, if the

customer’s organization maintains the software, the organization might
specify design notations and coding standards that a subcontractor must
follow.)

• Backward compatibility with earlier products and potential forward

compatibility, such as knowing which software version was used to create a
specific data file.

• Limitations or compliance requirements imposed by regulations or other

business rules.

47UWaterloo CS445/ECE451/CS645 Winter 2024

Constraints
• Sources of constraints include:

• Hardware limitations include timing requirements, memory or processor

restrictions, size, weight, materials, or cost.

• Physical restrictions because of the operating environment, user

characteristics, or limitations.

• Existing interface conventions to be followed when enhancing an

existing product.

• Interfaces with other systems, such as data formats and communication

protocols.

• Restrictions because of the display size, as when running on a tablet or

phone.

• Standard data interchange formats used, such as XML or RosettaNet for

e-business.
48UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Examples
CON-1. The user clicks at the top of the project list to change the sort sequence.

[specific user interface control imposed as a design constraint on a functional

requirement]

CON-2. Only open-source software available under the GNU General Public License may

be used to implement the product. [implementation constraint]

CON-3. The application must use Microsoft .NET framework 4.5. [architecture constraint]

CON-4. ATMs contain only $20 bills. [physical constraint]

CON-5. Online payments may be made only through PayPal. [design constraint]

CON-6. All textual data the application uses shall be stored in XML files. [data

constraint]

49

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Quality Requirements

50

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Behavioural Modelling

1

UWaterloo CS445/ECE451/CS645 Winter 2024

Glossary
• System behaviour: how a system acts and reacts.

• Behavior model: a view of a system that emphasizes the system’s

behaviour as a whole (as it appears to outside users).

• State-driven behaviour: means that the object’s behaviour can be

divided into disjoint sets.

2

UWaterloo CS445/ECE451/CS645 Winter 2024

UML State Diagrams
• State diagram: Shows data and behaviour of a single object

throughout its lifetime.

• set of states (including an initial start state)

• transitions between states

• entire diagram is drawn from that object's perspective

• What objects are best used with state diagrams?

• large, complex objects with a long lifespan

• domain (“model”) objects

• not valuable for doing state diagrams for every class in the system!

• Commonly used in design to describe an object’s behaviour as a guide
to implementation

• Used in RE to model interface specifications (e.g. UI)

• Specify each object’s contribution to all scenarios of all use cases.

3

UWaterloo CS445/ECE451/CS645 Winter 2024

UML State Diagrams
• Represented by Finite State Machine (FSM)

• Finite State Automaton (FSA) is another term for FSM.

4

UWaterloo CS445/ECE451/CS645 Winter 2024

States
• State: conceptual description of the data in the object

• represented by the object's field values

• Entire diagram is drawn from the 
central object's perspective

• only include states/concepts that 
this object can see and influence

• do not include every possible value 
for the fields; only ones that are 
conceptually different

5

UWaterloo CS445/ECE451/CS645 Winter 2024

Transitions
• Transition: movement from one state to another

• Event [condition] / action

• event:	 triggers (potential) state change

• condition:	a boolean condition that must be true

• action:	 any behaviour executed during the transition (optional)

• Transitions must be mutually exclusive (deterministic)

• it must be clear on what transition to take for an event

• most transitions are instantaneous (existing or measured at a particular

instant), except “do” activities

6

UWaterloo CS445/ECE451/CS645 Winter 2024

Note:
• Event is a noteworthy or significant occurrence in the environment.

• input message from the env. (login request)

• change in the env. (coin inserted, elevator button pressed)

• passage of time

• multiple events on a transition label are alternative triggers

• Condition is a Boolean expression:

• over domain model phenomena

• over state-machine variables

• Action is the system’s response to an event; it is non-interruptible.

• output message

• change to env phen. (Turnstile.locked := true. AddLoan(m:LibraryMember,

p:Publication, today:Date)

• multiple actions are separated by “;” and execute sequentially

7

Example
• Event Start Test changes the state from State 1 to State 2. 

• The transition takes place when the event Restart test occurs and the
power is false.

8UWaterloo CS445/ECE451/CS645 Winter 2024

State1 State2
Restart Test [power = false]

State1 State2
Start test

Example
• The variable status is set to F the event Abort occurs, provided that

power is true.

• No conditions on cancelling test. The variable status is set to C.

9UWaterloo CS445/ECE451/CS645 Winter 2024

State1 State2
Abort test [power = true] / status = F

State1 State2
Cancel test / status = C

Example
• No event on the transition. The transition happens automatically. 

• No event on the transition. The transition happens automatically,
provided that the condition evaluates to true.

10UWaterloo CS445/ECE451/CS645 Winter 2024

State1 State2

State1 State2
[power = false]

Example
• No event on the transition. The transition happens automatically, and

power is set to false.

• No event on the transition. The transition happens automatically,
provided that the condition evaluates to true. Status is set to P.

11UWaterloo CS445/ECE451/CS645 Winter 2024

State1 State2
[power = true] / status = P

State1 State2
/ power = false

UWaterloo CS445/ECE451/CS645 Winter 2024

How are transactions handled?
• If an object is in a state S that responds to an event E, it acts upon

that event.

• It transitions to the specified state if the event triggers a transition, and the

condition (if any) on that transition evaluates to true.

• It executes any actions associated with that transition.

• Events are quietly discarded if:

• A transition is triggered, but the transition’s condition evaluates to false.

• The event does not explicitly trigger a transition or reaction.

12

UWaterloo CS445/ECE451/CS645 Winter 2024

Internal Activities
• Internal activity: actions that the 

central object takes on itself

• sometimes drawn as self-transitions 

(events that stay in the same state)

• entry/exit activities

• reasons to start/stop being in that state

• Take time; interruptible; may require computation.

13

Typing

entry /highlight = true

do / count keystrokes

exit / highlight = false

UWaterloo CS445/ECE451/CS645 Winter 2024

Composite State
• Combines states and transitions that work together towards
a common goal. There are two kinds:

1. Hierarchical (simple / or-states)

2. Concurrent (orthogonal / and-states)

14

UWaterloo CS445/ECE451/CS645 Winter 2024

Hierarchical State
Hierarchy is used to cluster states with similar behaviours.

• One transition leaving a superstate represents a transition from each of the
superstate’s descendent states.

15

UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise

1.What happens if
event z occurs
when in state D?

2.What happens if
event y occurs
when in state D?

3.Can the
execution ever
leave state C?

16

UWaterloo CS445/ECE451/CS645 Winter 2024

Concurrent State
Some systems have orthogonal behaviors that are best modelled as
concurrent state machines

• Regions within a concurrent state execute in parallel.

• Each has its own thread of control.

• Each can “see” and react to events /conditions in the world

17

UWaterloo CS445/ECE451/CS645 Winter 2024 18

Concurrent State

UWaterloo CS445/ECE451/CS645 Winter 2024

Final State
A transition that has no
event or condition in its
label is enabled when
its

• source state is basic

and idle, or

• source superstate

entered its final
state, or

• source basic state has
finished internal
activity

19

UWaterloo CS445/ECE451/CS645 Winter 2024

Concurrency and Final States

20

UWaterloo CS445/ECE451/CS645 Winter 2024

Sequential decomposition: vending machine example

 [Change < 0]

 Idle MoneyCollected
CoinsInsertion

Cancellation

 ChangeChecked

Selection (Item)

 ChangeGiven

 [Change = 0] [Change > 0]
after (3 secs)

ItemGiven

GripToRow

GripToItem

ItemPushed

 RowOk

 ItemOk

21

UWaterloo CS445/ECE451/CS645 Winter 2024

Sequential decomposition: cash machine example

 CardInsertion
 Idle

 Active

Cancellation

 Validating

 Processing

Selection

OK-card

 Selecting

KO-card

[Continue]

[not Continue]

 Printingentry / readCard

 exit / ejectCard

 Maintenance

Maintenance

 Request End

inheritance

22

UWaterloo CS445/ECE451/CS645 Winter 2024

Sequential decomposition: thermostat controller

 shutDown
 Idle

 Cooling

 CoolActivating

 CoolActive

coolReady

/ CoolTurnOn

[Temp > Desired]

[Temp = Desired]

 Heating

HeatActivating

HeatActive

heatReady

/ HeatTurnOn

[Temp = Desired]

[Temp < Desired]

23

UWaterloo CS445/ECE451/CS645 Winter 2024

Parallel and sequential decomposition: example

Maintenance

 Request

 CardInsertion Idle

 Active

Cancellation

 Validating

 Processing

Selection

OK-card

 Selecting

KO-card

[Continue]

[not Continue]

 Printingentry / readCard

 exit / ejectCard

 End

 Maintenance

 Self

Diagnosis

Testing

Devices

 Executing

Command

Waiting

Comnd

Checking

Fixing
[More] [not More]

 key

Press

24

UWaterloo CS445/ECE451/CS645 Winter 2024

 AccelerComnd

 [Acceler > 0 and

 doorsState = ‘closed ’]

Stopped

 Moving

[Speed = 0]

 Accelerating

 Decelerating

AccelerComnd

 [Acceler > 0]

AccelerComnd

 [Acceler < 0]

AccelerComnd

 [Acceler < 0]

AccelerComnd

 [Acceler > 0]

 DoorsOpening

 [AtStation

 and Speed = 0]

doorsClosed doorsOpen

DoorsClosing

TrainState

synchronization:

train must be in

Stopped state for

getting into

doorsOpen state

SpeedState

DoorsState

25

Check Resulting Concurrent SM
• Within the concurrent state, for one controlled variable

• Unreachable states? (from the initial state)

• Missing states? (incl. final state)

• Missing or inadequate transitions? (events, guards)

• Missing actions?

• Between concurrent states, for different controlled
variables

• Synchronization needed? (as seen before)

• Shared events? Synchronizing guards? Event notification?

• Lexical consistency of event names? (as seen before)

26UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Priority

27

UWaterloo CS445/ECE451/CS645 Winter 2024

Priority

28

UWaterloo CS445/ECE451/CS645 Winter 2024

Determinism

29

UWaterloo CS445/ECE451/CS645 Winter 2024

History
• Provides a way of entering a group of states based on
the system’s history in that group.

• That is, the state entered is the most recently visited
state in that group.

• In the next slide, when event 5 occurs and state A is
entered, the history mechanism is used to determine the
next state within A.

• This is read as “enter the most recently visited state in the
group (B, C, D, E) or enter state B if this is the first visit to the
state.”

30

UWaterloo CS445/ECE451/CS645 Winter 2024

History

31

UWaterloo CS445/ECE451/CS645 Winter 2024

History Usage
• The history of a system overrides the default start state.

• A default start state must be specified for a group that uses the

history mechanism when the group is entered for the first time.

• The history of a system is only applied to the level in the hierarchy in

which it appears.

• To apply the history mechanism at a lower level in the state

hierarchy, it is necessary to use a history symbol at the lower levels.

32

UWaterloo CS445/ECE451/CS645 Winter 2024

Deep History
• An asterisk can be

attached to the history
symbol to indicate that
the history of the
system should be
applied all the way
down to the lowest
level in the state
hierarchy.

33

UWaterloo CS445/ECE451/CS645 Winter 2024

Termination

34

UWaterloo CS445/ECE451/CS645 Winter 2024

Time Event
A time event is the occurrence of a specific date/time or the
passage of time.

• Absolute time:

• at (12:12 pm, 12 Dec 2012)

• Relative time:

• after (10 seconds since exit from state A)

• after (10 seconds since x)

• after (20 minutes) // since the transition’s source state was

entered

35

UWaterloo CS445/ECE451/CS645 Winter 2024

Change Events
A change event is the event of a condition becoming true.

• The event “occurs” when the condition changes value from
false to true.

• when (temperature > 100 degrees)

• when (on)

• The event does not reoccur unless the value of the condition
becomes false and then returns to true.

• when(X) vs. [X]

36

UWaterloo CS445/ECE451/CS645 Winter 2024

Traffic Light Example

37

UWaterloo CS445/ECE451/CS645 Winter 2024

Creating a Behavior Model
1. Identify input and output events

2. Think of a natural partitioning into states

• Activity states – system performs activity or operation

• System modes – use different states to distinguish between different
reactions to an event

3. Consider the system’s behaviour for each state input.

4. Revise (using hierarchy, concurrency, and state events)

• Use concurrency to separate orthogonal behaviour

• Use hierarchy, and entry/exit actions, to abbreviate a common behavior

38

UWaterloo CS445/ECE451/CS645 Winter 2024

Behavioral Models Validation
• Avoid inconsistency: multiple transitions that leave the same state

under the same event/conditions.

• Ensure completeness: specify a reaction for every possible input at a

state.

• If transitions are triggered by an event conditioned on some guard, what

happens if the guard is false?

• Walkthrough: compare the behaviour of your state diagrams with the
use-case scenarios.

• All paths through the scenarios should be pathed in the state machines.

39

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

Behavioural Modelling

40

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements

Specifications and Analysis

OCL

1

UML is not enough

2UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Object Constraint Language
• Standardized by OMG

• Used to express constraints on UML models

• Not one of the UML notations

• Precise, yet easy to read

• It has language constructs for

• relating classes that have no direct association

• expressing queries over objects and collections of objects

• OCL constraints :

• Are declarative; they specify what must be true, not what must be done

• Have no side effects; do not change the state of the system

• Have formal syntax and semantics; their interpretation is unambiguous

3

Navigation Across Associations

4UWaterloo CS445/ECE451/CS645 Winter 2024

Expression Value
p
p.RentalAgreement
p.RentalAgreement.rented_car
p.RentalAgreement.rental_car.colour

Consider the object p:Person

UWaterloo CS445/ECE451/CS645 Winter 2024

Collections
An OCL expression may be over a collection(set, bag, sequence) of
objects:

context Person

self.RentalAgreement

returns set of rental agreements.

5

UWaterloo CS445/ECE451/CS645 Winter 2024

Collections
Defined properties of collections are denoted using the arrow notation
(->), to distinguish from properties defined on model elements.

Note: size() is OCL operation that counts number of vehicles

context Person inv:

self.RentalAgreement.Vehicle->size() <=3.

6

UWaterloo CS445/ECE451/CS645 Winter 2024 7

UWaterloo CS445/ECE451/CS645 Winter 2024

Basic Operators

8

UWaterloo CS445/ECE451/CS645 Winter 2024

Basic Operators

9

UWaterloo CS445/ECE451/CS645 Winter 2024

Basic Operators

10

UWaterloo CS445/ECE451/CS645 Winter 2024

Basic Operators

11

UWaterloo CS445/ECE451/CS645 Winter 2024

Basic Operators

12

UWaterloo CS445/ECE451/CS645 Winter 2024

Filtering Operators
To extract specific elements from an existing collection based
on the value of an expression.

• select: returns the elements that satisfy the given expression

• reject: returns the elements that falsify the given expression

Example:

Rental car companies never own red cars.

13

Example
Rental car companies never own red cars.

14UWaterloo CS445/ECE451/CS645 Winter 2024

context RentalCarCompany inv:

self.owns->select(colour=“red”)->isEmpty()

UWaterloo CS445/ECE451/CS645 Winter 2024

Quantification
exists: Boolean operation asserts that at least one element in
a collection satisfies some expression.

Example:

Every customer rents at least one black car.

15

Example
Every customer rents at least one black car.

16

context Person inv:

self.RentalAgreement.Vehicle->exists(colour=“black”)

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

Quantification
forAll: Boolean operation used to assert that all set members
satisfy a given expression.

Examples:

• All cars are rented.

• No car is rented more than once each day.

• All rental cars are white.

17

Example
All cars are rented.

18

context Vehicle inv:

self.RentalAgreement->forAll(r:RentalAgreement |

 r.start <= Date.today() and Date.today() <= r.end)

UWaterloo CS445/ECE451/CS645 Winter 2024

Example
No car is rented more than once each day.

19

context Vehicle inv:

self.RentalAgreement->forAll(r1,r2: RentalAgreement |

 (r1 <> r2) implies (r1.start > r2.end or r2.start > r1.end))

UWaterloo CS445/ECE451/CS645 Winter 2024

Example
All rental cars are white.

20

context RentalCarCompany inv:

self.owns->forAll(colour=“white”)

UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise
• Every person is aged 18 or older.

• No rental agreements are made whose price is less than $100.

21UWaterloo CS445/ECE451/CS645 Winter 2024

context Person inv:

self.age >= 18

context RentalAgreement inv:

self.price >= 100

Exercise
• All rental agreements started in or after the year 2000.

• People aged 65 or older have a 10% discount in rental agreements
created in or after 2024.

22UWaterloo CS445/ECE451/CS645 Winter 2024

context RentalAgreement inv:

self.start.year >= 2000

context RentalAgreement inv:

self.customer.age >= 65 implies

 ((self.start.year >= 2024) implies (self.discount = 10))

context Person inv:

self.age >= 65 implies

(self.RentalAgreement->select(start.year >= 2024)->forAll(discount = 10))

UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise

23

UWaterloo CS445/ECE451/CS645 Winter 2024

Married people are of age >= 18
context Person inv:

24

UWaterloo CS445/ECE451/CS645 Winter 2024

A company has at most 50 employees
context Company inv:

	

25

UWaterloo CS445/ECE451/CS645 Winter 2024

Note
1) context Company inv:

self.manager.age > 40

2) context Person inv:

26

self.wife->notEmpty() implies

self.wife.age <= 65

UWaterloo CS445/ECE451/CS645 Winter 2024

All instances of Person in a Bank have unique first
names

context Bank inv:

	

27

UWaterloo CS445/ECE451/CS645 Winter 2024

There is at least one employee above 50
context Company inv:

	

28

UWaterloo CS445/ECE451/CS645 Winter 2024

All employees are married
context Company inv:

	

29

UWaterloo CS445/ECE451/CS645 Winter 2024

Object Constraint Language
The OCL enables one to write formal expressions and
constraints on object-oriented models.

Types of OCL expressions/constraints include

• Invariant properties about objects, links, and attribute values

• Initial variable or attribute values

• Pre/Postconditions of functions

• Guard conditions and assignment expressions in State Machine
diagrams

30

UWaterloo CS445/ECE451/CS645 Winter 2024

Broken Constraints
Note that constraints simply state what ought to be true. If
the execution of the system leads to an object model for
which a constraint is not true, we say that the constraint is
broken or violated.

Nothing in a constraint specification says how to recover from
a broken constraint.

31

UWaterloo CS445/ECE451/CS645 Winter 2024

OCL Tools
Several tools support OCL from both universities and industry.
These tools range from

• Parsers and type checkers

• Evaluators that can check an OCL expression against all instances
of a UML class model

• Debuggers that step through an OCL expression and check each
subsection (to locate faulty subexpression)

• Code generators that translate OCL expressions into run-time
assertions

32

UWaterloo CS445/ECE451/CS645 Winter 2024

Summary
Object Constraint Language (OCL) expresses domain
assumptions as constraints on the domain model

33

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements
Specifications & Analysis

OCL

34

UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise
Model the following constraints as OCL expressions over the Flix.net
domain model.

a) Every charge of the subscription fee is $7.99.

b) Every subscription fee that is charged to a subscription is charged

on the monthly anniversary of the day on which the subscription
was activated.

c) One must have an active subscription to stream videos.

d) Videos can be streamed only to devices (i.e., TVs, computers)

within Canada.

35

Exercise

36UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements
Specifications & Analysis

Functional Modelling

1

UWaterloo CS445/ECE451/CS645 Winter 2024

So far we learned how to model the system by:
• Use case Diagrams

• Describe the functional behaviour of the system as seen by the user.

• Class diagrams

• Describe the static structure of the system: Objects, Attributes, Associations

• Sequence diagrams

• Describe the dynamic behaviour between actors and the system and between

objects of the system

2

UWaterloo CS445/ECE451/CS645 Winter 2024

The operation model
• Functional view of the system being modelled

• Multiple uses:

• software specifications

• input for development team

• description of environment tasks and procedures

• basis for deriving:

•black-box test data

•executable specs for animation, prototyping

• definition of function points (for size estimation), work units, user
manual sections

• satisfaction arguments, traceability management
3

UWaterloo CS445/ECE451/CS645 Winter 2024

What are operations?
• Operation Op = set of input-output state pairs (binary relation)

• input variable: object instance that its state affects the application of the
operation

• output variable: object instance its state is changed by the application of the
operation

• Operation application yields state transition from a state in
InputStateSet to a state in OutputStateSet

… tr.Speed |→ 0
tr.DoorsState |→ ‘closed’

Stop (tr) OpenDoors (tr)

… tr.Speed |→ 0
tr.DoorsState |→ ‘open’

instance i/o variable

state variable

operation

4

UWaterloo CS445/ECE451/CS645 Winter 2024

What are operations? (2)

• Op must operationalize underlying goals from the goal model

• To make these satisfied => application under restricted conditions

• Generally deterministic: relation over states is a function

• No multiple alternative outputs from the same input

• Atomic: map input state to state at next smallest time unit

• For operations lasting some duration: use startOp/endOp events

• May be applied concurrently with others

• e.g. OpenDoors || DisplayWhichPlatform

• Software operations, environment operations (tasks)

• e.g. PlanMeeting, SendConstraints

5

UWaterloo CS445/ECE451/CS645 Winter 2024

Characterizing system operations
• Basic features: Name, Definition, Category

• Signature

• declares the input-output relation over states

• input/output variables and their type (object from object model)

• scope may be restricted to specific attributes (nothing else changes)

• used in pre-, postconditions

• graphical or textual annotation

Operation OpenDoors
Input tr: TrainInfo / {Speed, DoorsState}
Output tr: TrainInfo / DoorsState

Open
Doors

Open
Doors

tr.Speed,
tr.DoorsState

TrainInfo
 tr.DoorsState

input

output
 instance variable

object

changes this attribute only

applies to these attributes only

6

UWaterloo CS445/ECE451/CS645 Winter 2024

Characterizing system operations (2)
• Conditions capturing the class of state transitions that define the

operation

• DomPre: condition characterizing the class of input states in the domain

• DomPost: condition characterizing the class of output states in the domain

DomPre tr.DoorsState = ‘closed’

DomPost tr .DoorsState = ‘open’
Open
Doors

7

UWaterloo CS445/ECE451/CS645 Winter 2024

Characterizing system operations (3)

• An agent performs an operation if the applications of this operation
are activated by instances of this agent

• Consistency rules between the operation model and agent model:

• Every input/output state variable in the signature of operation
performed by an agent must be monitored/controlled by it in the
agent model

• Unique performer; every operation is performed by precisely one
agent

8

UWaterloo CS445/ECE451/CS645 Winter 2024

Textual Functional Model

9

Operation 
Def: 
Input: 
Output: 
DomPre: 
DomPost:

UWaterloo CS445/ECE451/CS645 Winter 2024

Example
Operation OpenDoors 

Def: Operation controlling the opening of all train doors. 
Input: tr:Train / {Speed, Position, DoorsState}, 
Output: tr:Train / DoorsState 
DomPre: The doors of train tr are closed. 
 The speed of train tr is 0. 
 Train tr is at a platform. 
DomPost: The doors of train tr are open.

10

UWaterloo CS445/ECE451/CS645 Winter 2024

World States

The domain model represents the set of possible states
of the world (called world states).

11

UWaterloo CS445/ECE451/CS645 Winter 2024 12

UWaterloo CS445/ECE451/CS645 Winter 2024 13

UWaterloo CS445/ECE451/CS645 Winter 2024

The functional model expresses the system
functionality in terms of system changes to the world
state.

14

UWaterloo CS445/ECE451/CS645 Winter 2024 15

UWaterloo CS445/ECE451/CS645 Winter 2024

Abstract World State
• From the domain model (which defines types), we derive an abstract

world state model (which defines sets of instances)

• Example:

16

Library 
Member

memberID: Integer 
name: String

Publication

copyNumber: Integer

Title: String

Abstract World State

 Members: set of Library Member

 Pubs: set of Publication

 Borrows ⊆ Library Member ⨯ Publication

borrows *0..1

UWaterloo CS445/ECE451/CS645 Winter 2024

Exceptions

17

FindBorrowedPubs(memberID): set of Publication 
pre: Members[memberID] ≠ ø

modifies: <none>

post: return Borrows[memberID] 
exception: if(Members[memberID]) = ø

 then return error message

Library 
Member

memberID: Integer 
name: String

Publication

copyNumber: Integer

Title: String

borrows *0..1

UWaterloo CS445/ECE451/CS645 Winter 2024

Using the domain model diagram for Flix.net
Model the following operations of the system as functions
over an abstract world state of your domain model. Your
functions should specify all changes to the domain that a
function realizes, including new or deleted links -- even those
with actors. Specify exceptions if appropriate. You do not
need to specify an initial abstract world state. Include also
short descriptions of the parameters of your functions.

• Suspending a subscription

• Charging a subscription fee to a subscription

• Initiating a video stream to a device (i.e., TV or computer)

18

Suspending a subscription

19UWaterloo CS445/ECE451/CS645 Winter 2024

Suspending a subscription

20

Let s be the subscription to be
suspended.

Suspend (s:Subscription)

pre: <none>

modifies: Subscription

post: s.status = “suspended”

exception: <none>

UWaterloo CS445/ECE451/CS645 Winter 2024

Charging a subscription fee to a subscription

21UWaterloo CS445/ECE451/CS645 Winter 2024

Charging a subscription fee to a subscription

22

Let s be the subscription to be charged.

ChargeFee(s:Subscription)

pre: s.status=“active”

modifies: s.charge, Charges

post: new c’:Charge

 c’ = (date::today, amount::fee)

 Charges’ = Charges ∪ c’

 s’.charge = s.charge ∪ c’

exception: if s.status <> “active”

 then no change to the world state

UWaterloo CS445/ECE451/CS645 Winter 2024

Initiating a video stream to a device (i.e., TV or computer)

23UWaterloo CS445/ECE451/CS645 Winter 2024

Initiating a video stream to a device (i.e., TV or computer)

24

Let v be the Show to be streamed, let d be the receiving device
and let s be the requesting subscriber.

InitiateStream(s:Subscriber, d:Device, v:Show)

pre: s.status = “active” and d.location = “Canada” 
modifies: d, StreamRates

post: new sr’:StreamRate

sr’ = (d, v, “normal”)

StreamRates’ = StreamRates ∪ sr’

d’ = d ⊕ (d’.streams = v) ⊕ (d’.StreamRate = sr’)

exception: if(s.status <> “active” or d.location <> “Canada”)

 then no change to the world state

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements
Specifications & Analysis

Functional Modelling

25

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements
Specifications & Analysis

Sequence Diagrams

1

UWaterloo CS445/ECE451/CS645 Winter 2024

Sequence Diagrams
• UML has a language for describing scenarios, that of the sequence

diagram.

• Show step-by-step what’s involved in a use case

• Which objects are relevant to the use case

• How those objects participate in the function

• You may need several sequence diagrams to describe a single-use
case

• Each sequence diagram describes one possible scenario for the use case

• Show all events external actors generate, their order, and inter-
system events. All systems are treated as a black box; the emphasis
of the diagram is events that cross the system boundary from actors
to systems.

2

UWaterloo CS445/ECE451/CS645 Winter 2024

Sequence Diagrams
• Vertical line is called an object’s lifeline

• Represents an object’s life during interaction

• Object deletion denoted by X, ending a lifeline

• Horizontal arrow is a message between two objects

• Order of messages sequences top to bottom

• Messages labeled with message name

• Optionally arguments and control information

• Control information may express conditions:

• such as [hasStock], or iteration

• Returns (dashed lines) are optional

• Use them to add clarity

3

UWaterloo CS445/ECE451/CS645 Winter 2024

System Sequence Diagram (SSD)
For a use case scenario, a SSD shows:

• The System (as a black box)

• The external actors that interact with System

• The System events that the actors generate

• SSD shows operations of the System in response to events, in

temporal order

• Develop SSDs for the main success scenario of a selected use case,

then frequent and salient alternative scenarios

:System

4

UWaterloo CS445/ECE451/CS645 Winter 2024

Example: Use Case to SSD

5

UWaterloo CS445/ECE451/CS645 Winter 2024

SSD for Process Sale scenario 
(Larman, page 175)

6

UWaterloo CS445/ECE451/CS645 Winter 2024

Interaction Frame Operators

7

alt

8

opt

9

loop

10

UWaterloo CS445/ECE451/CS645 Winter 2024

Rules of thumb
• Rarely use option, loop, alt/else

• These constructs complicate a diagram and make them hard to

read/interpret.

• Frequently it is better to create multiple simple diagrams

• Create sequence diagrams for use cases when it helps clarify
and visualize a complex flow

• Remember: the goal of UML is communication and
understanding

11

UWaterloo CS445/ECE451/CS645 Winter 2024

Lifetime: Creation / Deletion

12

UWaterloo CS445/ECE451/CS645 Winter 2024

“Call” to Sub Diagram

13

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements
Specifications & Analysis

Sequence Diagrams

14

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements
Specifications & Analysis

Use Cases and Scenarios

1

UWaterloo CS445/ECE451/CS645 Winter 2024

Requirements / Specification Models
Model: a simplified version of something complex used in analyzing
and solving problems or making predictions.

Modeling consists of building an abstraction of reality.

Uses of Models:

• Can guide elicitation

• Can provide a measure of progress

• Can help to uncover problems

• Can help us check our understanding

2

UWaterloo CS445/ECE451/CS645 Winter 2024

UML (Unified Modeling Language)
• Provides a standard way to visualize the design of a system

• Unified: it has become a world standard (OMG Object Management

Group, www. omg.org)

• Modeling: it describes a software system at a high level of

abstraction

• Language: it expresses an idea, not a methodology

• More…

• It is an industry-standard graphical language for specifying, visualizing,
constructing, and documenting the artifacts of software systems

• The UML uses mostly graphical notations to express software projects' OO
analysis and design.

• Simplifies the complex process of software design

3

UWaterloo CS445/ECE451/CS645 Winter 2024

Types of UML Diagrams (first pass):
• Class diagrams

• Describe the static structure of the system: Objects, Attributes, Associations

• Use case Diagrams

• Describe the functional behavior of the system as seen by the user.

• Sequence diagrams

• Describe the dynamic behavior between actors and the system and between objects of the
system

• State diagrams

• Describe the dynamic behavior of an individual object (essentially a finite state

automaton)

• Activity Diagrams

• Model the dynamic behavior of a system, in particular the workflow (essentially a
flowchart)

This is only a subset of diagrams, but are most widely used
4

UWaterloo CS445/ECE451/CS645 Winter 2024

Use Case (UC)
• Each particular way to use a system is called a use case.

• It is one case of the many ways to use the system.

• Use cases are a summary of the way that all types of users will

interact with the (proposed) system

• Use cases can help us discover/document requirements

• Should be easy to read

• Defines the interactions between system and actors

• Focuses on interaction, not internal system activities.

• A use case should not be confused with a scenario. A scenario of

system is a particular sequence of interaction steps between a user
and the system.

5

UWaterloo CS445/ECE451/CS645 Winter 2024

Which of the following is a use case?
• Order cost = order item costs * 1.06 tax.

• Promotions may not run longer than 6 months.

• Customers only become Preferred after 1 year.

• A customer has one and only one sales contact.

• Response time is less than 2 seconds.

• Uptime requirement is 99.8%.

• Number of simultaneous users will be 200 max.

6

UWaterloo CS445/ECE451/CS645 Winter 2024

Consider software to run a cell phone:

Use Cases

■ call someone

■ receive a call

■ send a message

■ memorize a number

Point of view: user

Internal Functions

■ transmit / receive data

■ energy (battery)

■ user I/O (display, keys, ...)

■ phone-book mgmt.

Point of view: developer /
designer

7

UWaterloo CS445/ECE451/CS645 Winter 2024

Actors and stakeholders
• Actor: anything with behavior that acts on the system. An actor might

be a person, a company or organization, a computer program, or a
computer system-hardware, software, or both. 

• Stakeholder: anyone interested in the system. Stakeholder might not
“act” in any case/scenario. 

• Primary vs secondary actors.

8

UWaterloo CS445/ECE451/CS645 Winter 2024

Exercise: Use case Diagram
• Flix.net is an internet service for streaming movies and TV shows to personal

computers and TVs.

• Anyone can browse the Flix.net library (by title, actor, director, and genre),

but one must have a subscription to stream videos.

• A user can activate (i.e., create), suspend, or cancel membership.

• An account is active if it has not been suspended (and not re-activated) or

cancelled.

• The subscription fee is $7.99 per month, charged on the monthly anniversary

of the subscription’s activation.

• If a user has an active subscription and accesses the website from within

Canada, the user can stream as many videos (from the Flix.net library) as
desired at any time of the day.

• A user can pause, rewind, fast-forward or stop a stream as often as they like.

9

10

• Flix.net is an internet service for
streaming movies and TV shows to
personal computers and TVs.

• Anyone can browse the Flix.net
library (by title, actor, director, and
genre), but one must have a
subscription to stream videos.

• A user can activate (i.e., create),
suspend, or cancel membership.

• An account is active if it has not
been suspended (and not re-
activated) or cancelled.

• The subscription fee is $7.99 per
month, charged on the monthly
anniversary of the subscription’s
activation.

• If a user has an active subscription
and accesses the website from within
Canada, the user can stream as many
videos (from the Flix.net library) as
desired at any time of the day.

• A user can pause, rewind, fast-
forward or stop a stream as often as
they like.

Flix.net

User

Flix.net 
Member

Administrator

Credit Card
Authorization

System

Browse
Library

Manage
Subscription

Stream Video

Manage
Library

Charge
Account

<<actor>> 
Time

UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

<<include>>
• A sub-use case that is used within multiple other use cases.

• You have a piece of behaviour that is similar across many use cases

• Break this out as a separate use case and let the other ones “include” it

• Examples include

• Valuation

• Validate user interaction

• Sanity check on sensor inputs

• Check for proper authorization

11

UWaterloo CS445/ECE451/CS645 Winter 2024

Example

12

Sales

Assistant

Take
Customer

Order

Return Faulty
Goods

Identify
Customer

<<include>>

<<include>>

The Loo Store

UWaterloo CS445/ECE451/CS645 Winter 2024

<<extend>>
• A subcase that extends or replaces the end of an existing use case.

• A use-case is similar to another one but does a little bit more

• Put the typical behaviour in one use case and the extended behaviour somewhere else

• Capture the normal behaviour

• Try to figure out what can go wrong in each step

• Capture the extended cases in separate use-cases

• Makes it a lot easier to understand

13

UWaterloo CS445/ECE451/CS645 Winter 2024

Example

14

User

Register Get Help on
Registration

<<extend>>

OfficeHours.com

UWaterloo CS445/ECE451/CS645 Winter 2024

What is wrong with this use case diagram?

15

Client
Identify Client

Request
Statement

CIBIC

Request Cash

Request
Cheque Book

Request
Balance

<<extend>>

<<extend>>

<<extend>><<extend>>

UWaterloo CS445/ECE451/CS645 Winter 2024

What is wrong with this use case diagram?

16

Client Identify Client

Request
Statement

CIBIC

Request Cash

Request
Cheque Book

Request
Balance

<<include>>

<<include>>

<<include>>

<<
inc

lud
e>

>

UWaterloo CS445/ECE451/CS645 Winter 2024

What is wrong with this use case diagram?

17

Client Identify Client

Request
Statement

CIBIC

Request Cash

Request
Cheque Book

Request
Balance

<<include>>

<<include>>

<<include>>

<<
inc

lud
e>

>

Use
Fingerprint

Scan

Use
Retina Scan

Use
Card and PIN

Another example:

18

Withdraw

Money

Client

Withdraw from

Savings Account

Withdraw from

Checking Account

<<extend>>

<<extend>>

UWaterloo CS445/ECE451/CS645 Winter 2024

WaterlooTD Bank

This is an extend dependency.

It indicates that use case “Withdraw
from Checking Account” is part of use
case “Withdraw Money”, but it may or
may not be invoked.

The same is true of use case
“Withdraw from Savings Account”.

Another example:

19

Withdraw

Money

Client

Withdraw from

Savings Account

Withdraw from

Checking Account

UWaterloo CS445/ECE451/CS645 Winter 2024

WaterlooTD Bank

Another example:

20

Transfer Money

Client

Update Account
Balance

Select Account

<<include>>

<<include>>

UWaterloo CS445/ECE451/CS645 Winter 2024

WaterlooTD Bank

This is an include dependency.

It indicates that use case “Update
Account Balance” is “included” in use
case “Transfer Money” and will be
invoked.

The same is true of use case “Select
Account”.

UWaterloo CS445/ECE451/CS645 Winter 2024

Summary

21

Example:

22

Receptionist

HosPT reception

Schedule Patient
Appointment

Schedule Patient
Hospital Admission

Register Patient

Admit Patient

FIle Insurance
Forms and Claims

File Medical Reports

UWaterloo CS445/ECE451/CS645 Winter 2024

Outpatient
Hospital Admission

Inpatient Hospital
Admission Allocate Bed

<<include>>

<<include>>

<<extend>>

<<extend>>

• Describe use cases in a table format.

UWaterloo CS445/ECE451/CS645 Winter 2024

Use-Case description

23

Name: Order Blood ID: UC25
Authors: Steve Doe

Goal: Process blood order and payment.

Trigger: Customer submits blood order payment information.

Preconditions: Customer is registered in the system.

Notes:
Main Scenario:
Customer System Blood Database Credit Card Authorization

System
1. Customer submits
blood order.

2. Checks availability of
blood.

3. Requested Blood is
available.

4. Prompts customer for
Payment type: credit or
invoice.

UWaterloo CS445/ECE451/CS645 Winter 2024

More Complex Actions
• If => Conditional statement

• For => iteration expression

• While => conditional iteration

• Go To UCn

Example:

These are not needed very often and maybe a sign that the use case is becoming
too detailed or too much like pseudo-code.

24

UWaterloo CS445/ECE451/CS645 Winter 2024

Scenarios
• Scenario is a one full execution path through a use case, listing only

observable actions of the system and actors.

• A single-use case contains many scenarios

25

UWaterloo CS445/ECE451/CS645 Winter 2024

Main Scenario

26

UWaterloo CS445/ECE451/CS645 Winter 2024

Alternative Scenario
• A sub-case that achieves the primary goal of UC through different

sequences of steps/actions

27

UWaterloo CS445/ECE451/CS645 Winter 2024

Exception
• A sub-case that captures a special case

28

UWaterloo CS445/ECE451/CS645 Winter 2024

Use case traps to avoid
• Too many use cases:

• If you are caught in a use case explosion, you might not write them at the
appropriate level of abstraction.

• Do not create a separate use case for every possible scenario.  

• Highly complex use cases:

• You cannot control the complexity of the business tasks, but you can control

how you represent them in use cases.

• Select one success path through the use case and call that the main flow. Use

alternative flows for the other logic branches that lead to success, and use
exceptions to handle branches that lead to failure.

• You might have many alternatives, but each one will be short and easy to
understand.

29

UWaterloo CS445/ECE451/CS645 Winter 2024

• Including design in the use cases:

• Use cases should focus on what the users need to accomplish with the system’s

help, not how the screens will look.

• Emphasize the conceptual interactions between the actors and the system.

• For example, say “System presents choices” instead of “System displays a drop-down
list.”

• Don’t let the UI design drive the requirements exploration.

• Including data definitions in the use cases:

• Store data definitions in a project-wide data dictionary and data model

• Use cases that users do not understand:

• If users cannot relate a use case to their business processes or goals, there is a

problem.

• Write use cases from the user’s perspective, not the system’s point of view,

and ask users to review them.

• Keep the use cases as simple as possible while still achieving clear and

effective communication.

30

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements
Specifications & Analysis

Use Cases and Scenarios

31

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements Specifications

& Analysis

Domain Model

1

How are class diagrams, and, indeed, how are all of
UML, used in requirements engineering to help arrive
at a specification of requirements?

2UWaterloo CS445/ECE451/CS645 Winter 2024

Do you remember?

A domain model is a model of the operating environment of our proposed
system

3UWaterloo CS445/ECE451/CS645 Winter 2024

Just a quick peek

4UWaterloo CS445/ECE451/CS645 Winter 2024

The object model
• Structural view of the system being modeled (as-is or to-be)

• Roughly, shows how relevant system concepts are structured and interrelated

• Represented by UML class diagram

• “objects”, classes not in the OO design sense: RE is concerned with the problem world only!

• classes with no operations: data encapsulation is a design concern; no design decisions here!

• Multiple uses

• precise definition of system concepts involved in other views, their structure and descriptive properties

• state variables manipulated in other views

• common vocabulary

• basis for generating a glossary of terms

5UWaterloo CS445/ECE451/CS645 Winter 2024

Outline
• What is a conceptual object?

• Entities

• Associations and multiplicities

• Attributes

• Specialization

• Aggregation

• More on class diagrams

• derived attributes, OR associations, associations of associations

• Building object models: heuristic rules
6UWaterloo CS445/ECE451/CS645 Winter 2024

What is a conceptual object?
• Set of instances of a domain-specific concept manipulated by the

modelled system. These instances

• are distinctly identifiable

• can be enumerated in any system state

• share similar features

• common name, definition, type, domain properties,

• common attributes, associations

• may differ in their individual states and state transitions

7UWaterloo CS445/ECE451/CS645 Winter 2024

Types of conceptual object
1. Agent: active, autonomous object

• instances have individual behavior =

 sequence of state transitions for state variables they control

• e.g. Patron, Staff; TrainController, TrainDriver

• represented as UML class (if attributes, associations needed)

2. Entity: autonomous, passive object

• instances may exist in system independently of instances of other objects

• instances cannot control behavior of other objects

• e.g. Book, Journal; Train, Platform

• represented as UML class

8UWaterloo CS445/ECE451/CS645 Winter 2024

3. Event: instantaneous object

• instances exist in single system state

• e.g. BookRequest; StartTrain

• represented as UML class (if attributes, associations needed)

4. Association: object dependent on objects it links

• instances are conceptual links among object instances

• e.g. Loan linking Patron and BookCopy

Copy linking BookCopy and Book

At linking Train and Platform

On linking Train and Block

• represented as UML association
Object

Entity Association EventAgent
Subtype

9UWaterloo CS445/ECE451/CS645 Winter 2024

Associations
• Association = conceptual object linking other objects,

 each playing specific role

• dependent on objects it links

• linked objects may be entities, associations, events, agents

• Reflexive association = same object appears under different roles

• Arity of association = number of objects linked by it

• In 2 slides

On
Train isOn Block

holds
roles

10UWaterloo CS445/ECE451/CS645 Winter 2024

11

Association instances
• Association instance = tuple of linked object

instances, 
 each playing corresponding role

InstanceOf

tr1 tr2 bl2bl1 bl3
On (tr2,bl1)

On (tr1,bl3)

On
Train isOn Block

holdsTrain

UWaterloo CS445/ECE451/CS645 Winter 2024

N-ary associations: arity > 2

n-ary association

BookCopy

 Book

Copy

BorrowedByBorrows

LibraryPeriod 1

*

0..1 0..MaxPatron

Loan

Registration

0..1 1..*

for a given library and registration period,

 there may be 0 up to an unbounded number

of registered patrons

*

agent

12UWaterloo CS445/ECE451/CS645 Winter 2024

Multiplicities of n-ary association
• From fixed source (n-1)-tuple of currently linked instances: min/max

number of linked target instances

• attached to the role of the target instance

• For binary associations, express standard constraints

• min = 0: optional link (possibly no link in some states)

• min = 1: mandatory link (at least one link to target in any state)

• max = 1: uniqueness (at most one link to target in any state)

• max = *: arbitrary number N of target instances linked to

 source instance, in any state (N >=0)

Notation: “k” for “k..k”, “*” for “0..*”

Patron
 BookCopy
0..Max

Borrows BorrowedBy
0..1

13UWaterloo CS445/ECE451/CS645 Winter 2024

Entities, associations in UML

 Platform

At

On Block Train
0..1

0..1

1..2

isOn holds

*

Command

Driving

1

*

a block may hold

 0 or 1 train

a train may be at

 0 or 1 platform at most

association

entity

14UWaterloo CS445/ECE451/CS645 Winter 2024

Association Qualifiers
• A qualifier is a unique association used at one end of the association to

distinguish among the set of objects at the other end of the association.

• “uniquely identifies.”

15UWaterloo CS445/ECE451/CS645 Winter 2024

Entities, associations, attributes in UML

 Platform

At

On Block

SpeedLimit: Speed

 Train

CurrentSpeed: Speed

CurrentLoc: Location

DoorsState: {open,...}

...

0..1

0..1

0..1

isOn holdsTrain

*

In

Command

CommandedSpeed: Speed

CommandedAccel : Acceleration
Driving

1

*

attribute

16UWaterloo CS445/ECE451/CS645 Winter 2024

Entities, agents, associations, attributes in UML

BookCopy

CopyID

 Book

Keywords [1..*] : Topics

Copy

BorrowedByBorrows

LibraryPeriod

 Loan

DateBorrowed: Date

TimeLimit: NumberWeeks

DueReturnDate: Date

 Registration
DateRegistered: Date

Deposit: Money

1

*

0..1 0..MaxPatron

Phone [*] : String

attribute of
association

attribute of
association

multiplicity

17UWaterloo CS445/ECE451/CS645 Winter 2024

Built-in associations for structuring object models

• Object specialization/generalization, decomposition/aggregation

• applicable to entities, agents, events, associations

• Specialization = subclassing: object SubOb is a specialization of object SuperOb iff for any
individual o:

InstanceOf (o, SubOb) => InstanceOf (o, SuperOb)

• SubOb specializes SuperOb, SuperOb generalizes SubOb

• amounts to set inclusion on set of current instances

• Feature inheritance as a consequence

• by default, SubOb inherits from SuperOb all its attributes, associations, domain
properties while have its own distinguishing features

• may be inhibited by compatible redefinition of feature with same name within
specialized SubOb (“override”)

18UWaterloo CS445/ECE451/CS645 Winter 2024

Example: Object specialization with inheritance

 Platform

At

On Block

SpeedLimit: Speed

 Train

CurrentSpeed: Speed

CurrentLoc: Location

DoorsState: {open,...}

...

0..1

0..1

0..1

isOn holdsTrain

*

Semi-rapid

……..

Rapid

…….

Command

CommandedSpeed: Speed

CommandedAccel : Acceleration
Driving

1

*

inherited featuresspecialisation

19UWaterloo CS445/ECE451/CS645 Winter 2024

 TrafficSignal

Color: {green, orange, red}

Location

...

inherited

 WarningSignal

Color: {orange}compatible
redefinition

(subsort)

The more specific feature always overrides the more general one.

20UWaterloo CS445/ECE451/CS645 Winter 2024

Multiple inheritance
• The Same object may be a specialization of multiple super-objects

• by default, inheritance of all features from all super-objects

• Can result in inheritance conflicts

• different features with the same name inherited from different super-objects

=> conflicting features first renamed to avoid this

 Student
Address

StudentID

renamed

StudentAddress

to avoid conflict

 Patron
Address

Email

 StudentPatron

...

21UWaterloo CS445/ECE451/CS645 Winter 2024

Multiple specializations
• The Same object may have multiple specializations

• Different subsets of object instances associated with different criteria

• Same object instance may be a member of different subsets (one per criterion)

• Discriminator = attribute of super-object whose values define different
specializations (differentiation criterion)

Speed Capacity

Train

Acceleration
DoorsState

discriminating
attribute

ShortTrain

…

SemiRapid

…

Rapid
…

LongTrain
…

22UWaterloo CS445/ECE451/CS645 Winter 2024

Object generalization

Book

 registeredAt

Loan

DateBorrowed: Date
TimeLimit: NumberWeeks

BorrowableItem

CopyID
DateEntered

…

Copy

Borrows BorrowedBy

 0..1 0..Max
Patron

Phone [*]: String
Email: Prefix x Suffix

 … StudentID
YearOfStudy

Student

features inherited by
all specializations

BookCopy

…

StudentPatron
…

StaffPatron
Department

JournalCopy
…

ProceedingsCopy
ResearchAccount

multiple
inheritance

…

Issue

Journal
Author

Conference
ConfSeries

ProcOf

generalization is

not necessarily apparent

in problem world 23UWaterloo CS445/ECE451/CS645 Winter 2024

Object aggregation/composition
• Aggregation: an object may belong weakly to several containers

• A has an aggregation relationship with B and C if they are parts of A

• Composition: an object may strongly be a part of at most one container

• Strong form of aggregation

• Parts only belong to one whole

• If the whole is deleted, parts get deleted

• Fuzzy distinctions between

• Aggregation

• Composition

• Association

24UWaterloo CS445/ECE451/CS645 Winter 2024

Examples of aggregation and composition
aggregation

composition

25UWaterloo CS445/ECE451/CS645 Winter 2024

Tips:
1. You Should Be Interested In Both The Whole And The Part

2. Depict the Whole to the Left of the Part

3. Apply Composition to Aggregates of Physical Items

4. Apply Composition When the Parts Share The Persistence Lifecycle With

the Whole

5. Don't Worry About Getting the Diamonds Right ☺

26UWaterloo CS445/ECE451/CS645 Winter 2024

More on UML class diagrams
• Ordered association: multiple target instances from the source instance (or

tuple of instances) are ordered.

Library

Directory Shelve AntiTheft
1..*

1

0..11

0..1

BookCopy

CopyID

*(ordered) Content

27UWaterloo CS445/ECE451/CS645 Winter 2024

More on UML class diagrams

28

• OR association = same role played by alternative objects

• set of object instances in this role =  

 union of alternative sets of object instances

Book
…

Journal
…

OR-association

BorrowableItem
CopyID
DateEntered

Copy
Copy

MasterOf

MasterOf

 0..1

 0..1
*

*

UWaterloo CS445/ECE451/CS645 Winter 2024

More on UML class diagrams
• Association of associations: one of the linked objects is an association

1

 1..*

Performance
Date

Hall
 …

Seat
Seat#

Season
…

…

Concert 1

Reservation
Reserv#
ReservDate

 1..*

 1..*

29UWaterloo CS445/ECE451/CS645 Winter 2024

By default, every object has its own copy of attributes, and may have its own
attribute values.

A class-scope attribute is an attribute whose value is changeable, but is shared
by all of the class’s object instances. Thus, all objects will have the same class-
scope attribute value.

Syntax: underlined attribute declaration

30UWaterloo CS445/ECE451/CS645 Winter 2024

Building object models: heuristic rules
• Deriving pertinent and complete object models from goal models

• deriving objects, associations, attributes

• From goal model to object model

• Object or attribute?

• Entity, association, agent, or event?

• Bad smells

31

Object or attribute ?
 For X: conceptual item in goal specs, make X an attribute if

• X is a function: yielding one single value (possibly structured) when applied to
conceptual instance

• instances of X need not be distinguished

• you don’t want to attach attributes/associations to X, specialize it, or aggregate/
decompose it

• its range is not a concept you want to specialize or attach attributes/associations

Book

Authors: String

vs.
Author
 Book
Writing

Birthdate

MainAuthor
 Co-Author

32UWaterloo CS445/ECE451/CS645 Winter 2024

Entity, association, agent, or event ?
 For X: conceptual object in goal specs

• instances of X are defined in one single state

⇒ event e.g. StartTrain
• instances of X are active: control behaviors of other object instances

⇒ agent e.g. DoorsActuator
• instances of X are passive, autonomous

⇒ entity e.g. Train

• instances of X are passive, dependent on other, linked object instances

⇒ association e.g. Following (Train, Train)
 N-ary if each of the N parties ...

 - need be considered as objects

 - yields tuples to be distinguished

33UWaterloo CS445/ECE451/CS645 Winter 2024

Building object models: bad smells

34UWaterloo CS445/ECE451/CS645 Winter 2024

Building object models: bad smells

35UWaterloo CS445/ECE451/CS645 Winter 2024

Building object models: bad smells

36UWaterloo CS445/ECE451/CS645 Winter 2024

Building object models: bad smells
Avoid “pointers” to other objects as attributes

• use binary associations instead

 Borrower

 Loan
 BookCopy

 Borrower

Loan: BookCopy

 BookCopy

 BAD

 GOOD

37UWaterloo CS445/ECE451/CS645 Winter 2024

Building object models: bad smells (2)

Avoid non-structural links pertaining to other views

• monitoring/control links from agent model (context diagram)

 TrainController
 Train

setsAcceleration

 TrackingSystem
 Train

getsPosition

 BAD

 BAD

 BAD

 Initiator
 Meeting

DateRange

Date

Initiating

Scheduler
 Scheduling

 GOOD
 Initiator

 Meeting

setsDateRange

Scheduler
 setsDate

38UWaterloo CS445/ECE451/CS645 Winter 2024

Building object models: bad smells (3)

Avoid non-structural links pertaining to other views

• dynamic links from behavior model (state diagram)

 BorrowerRequest

 Loan

Generates

 GoSignal

 Train

Activates

 BAD

 BAD

39UWaterloo CS445/ECE451/CS645 Winter 2024

Building object models: bad smells (4)

Avoid obscure names for objects & attributes

• suggestive shortcut of their annotated definition

• don’t forget precise definition!

• don’t confuse terms ! e.g. Book vs. BookCopy

• from problem world, NOT implementation-oriented

• Bad JPEG_File , Book_File

• Good Picture , Directory

• specific, NOT vague

• Bad Person , Form

• Good Patron , RegistrationForm

• commonly used, NOT invented

• Bad PersonalIdentificationCard, ConferenceBook

• Good StudentCard, Proceedings

40UWaterloo CS445/ECE451/CS645 Winter 2024

41UWaterloo CS445/ECE451/CS645 Winter 2024

Domain Model should have
• Attributes and their types

• Multiplicities on all associations (including “1” multiplicities)

• Association names, or role names, for all non-trivial associations

• Qualifiers to simplify multiplicities in associations

• Actors showed as stick figures or as classes with «actor» stereotype

• This requires you to show multiplicities between actors and classes, which
can be a valuable requirement detail.

42UWaterloo CS445/ECE451/CS645 Winter 2024

Domain Model should NOT have…
• Class-level operations or methods

• Visibility annotations (i.e., private, protected, public)

• Navigability arrows

• Initial attribute values (unless you need them for model

correctness)

• Object construction and destruction functions

43UWaterloo CS445/ECE451/CS645 Winter 2024

Behave! Watch your language
• The goal is to create a conceptual model:

• Models of real-world entities (customers, accounts, bills) and not of
system entities (databases, SW components)

• Focus on the information/artifacts that the system will input,
transform, analyze, display, etc.; physical and conceptual

44UWaterloo CS445/ECE451/CS645 Winter 2024

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645
Software Requirements Specifications

& Analysis

Domain Model

45

CS445/ECE 451/CS645
Software Requirements Specifications

& Analysis

Requirements Engineering
Reference Model

UWaterloo CS445/ECE451/CS645 Winter 2024 1

Overview

Goal: A clear understanding of what requirements are, what specifications are,
and what the relationship between them is.

UWaterloo CS445/ECE451/CS645 Winter 2024 2

Requirements, specifications, and programs

UWaterloo CS445/ECE451/CS645 Winter 2024 3

Sensors

Actuators

UWaterloo CS445/ECE451/CS645 Winter 2024

• A system can be a socio-technical
artifact to be constructed; it can be
composed of some mix of software
and hardware, humans and
processes.

• We scope the Environment to
include only those aspects of the
real world that are relevant to the
particular problem at hand.

• The generalized environment is
sometimes called the application
domain.

• A domain model is a diagram that
shows how domain entities are
related to each other. (I will talk
about it later)

4

UWaterloo CS445/ECE451/CS645 Winter 2024

• Shared Phenomena are visible to
both the Environment and the
System and form the Interface
between the two.

• Interface serves as a
communication bridge between the
environment and the system.

5

Requirements

UWaterloo CS445/ECE451/CS645 Winter 2024

• Are desired changes to the World.
• Are expressed in terms of environmental

phenomena.
• Are statements of desired properties:
• Often high level
• May need to be elaborated, organized,

analyzed
• Heard during elicitation

6

Specification

UWaterloo CS445/ECE451/CS645 Winter 2024

• Is a description of the proposed
system.

• Should describe what the system
is supposed to do, without
indicating how the system will be
realized.

7

Scoping the environment

UWaterloo CS445/ECE451/CS645 Winter 2024

• It is a subset of the world
• Want to model only as much of

the world as is necessary to
express the requirements and
the specification

8

Example
Suppose that the city of Waterloo decides to raise funds by instituting users
fees for public parks.

Requirements:
R1: Collect $1 fee from each user on entry to the park.
R2: Ensure that anyone who has paid may enter the park.
R3: Ensure that no one may enter the park without paying.

Solutions: Human fee collectors vs. turnstiles with automated coin collection.

UWaterloo CS445/ECE451/CS645 Winter 2024 9

Turnstile Example

Requirement Interface Specification
Collect $1 fee from each user
on entry to the park

Coin slot (Env) coin inserted into slot
(Sys) senses coin

Ensure that anyone who has
paid may enter the park

Barrier (Sys) unlocks barrier upon sensing a new coin
(Env) visitor can detect that barrier is unlocked,
can push barrier

Ensure that no one may
enter the park without
paying.

Barrier (Sys) detects entry
(Sys) relocks barrier

UWaterloo CS445/ECE451/CS645 Winter 2024 10

Domain Knowledge

UWaterloo CS445/ECE451/CS645 Winter 2024

• Ideally, we want to be able to show that the specifications imply the
requirements:

Spec ⊨ Req

• Often, we cannot do so without making some assumptions about how the
environment behaves.

Dom ⊆ Env
• Domain Knowledge is thus the set of properties that we know (or assume) to

be true of the Environment that is relevant to the problem.

11

•An assumption is a statement that is believed to be true in
the absence of proof or definitive knowledge.

•Business assumptions are specifically related to the
business requirements. Incorrect assumptions can
potentially keep you from meeting your business
objectives.

UWaterloo CS445/ECE451/CS645 Winter 2024 12

RE Reference Model
The fundamental law of requirements:

Dom, Spec ⊨ Req

Must be able to argue that the specification of the system plus the
assumptions are enough to satisfy the requirements.

UWaterloo CS445/ECE451/CS645 Winter 2024 13

Deriving Specifications
For each requirement (Req)
• Determine how the system will monitor/control the environment
• Determine whether Req constrains environmentally-controlled phenomena

(if so, identify domain assumptions (Dom))

• Check that Dom, Spec ⊨ Req

UWaterloo CS445/ECE451/CS645 Winter 2024 14

Example: Traffic Light
R: Allow car traffic to cross an intersection safely, without colliding with traffic
travelling in other directions.

D: drivers behave legally and cars function correctly

S: spec of traffic light that guarantees that perpendicular directions do not
show green/yellow at the same time.

UWaterloo CS445/ECE451/CS645 Winter 2024 15

Correctness
• To evaluate a specification, you must be able to argue that the SUD spec plus

the domain assumptions are enough to satisfy the requirements. Dom, Spec ⊨
Req

• What do you need to do if you couldn’t make this argument successfully?

UWaterloo CS445/ECE451/CS645 Winter 2024

R: Allow car traffic to cross an intersection safely without colliding with
traffic travelling in other directions.

D: drivers behave legally, and cars function correctly

S: spec of a traffic light that guarantees that perpendicular directions
do not show green/yellow simultaneously.

16

Uncertainty in D, S ⊨ R
• D, S ⊨ R tries to describe what happens ultimately formally.
• One would expect computers and software and their combination to be

formal in this sense.
• But, the real world intervenes to make this formula a guideline, not an

accurate, precise model.

UWaterloo CS445/ECE451/CS645 Winter 2024 17

RE Reference Model
The fundamental law of requirements:

Dom, Spec ⊨ Req

Must be able to argue that the specification of the system plus the
assumptions are enough to satisfy the requirements.

UWaterloo CS445/ECE451/CS645 Winter 2024 18

CS445/ECE 451/CS645
Software Requirements Specifications

& Analysis

Requirements Engineering
Reference Model

UWaterloo CS445/ECE451/CS645 Winter 2024 19

CS445/ECE 451/CS645
Software Requirements Specifications & Analysis

Elicitation
To elicit means “to bring out, to evoke, to call forth”

U Waterloo CS445/ECE451/CS645 Winter 2024 1

Purpose
The purpose of elicitation is to get information about:
• Current work and current problems
• The requirements of the system
• The environment in which the system will operate

In order to:
• identify relevant requirement sources
• elicit existing requirements from the identified sources
•develop new and innovative requirements

U Waterloo CS445/ECE451/CS645 Winter 2024 2

The expectation gap

U Waterloo CS445/ECE451/CS645 Winter 2024 3

Who is a stakeholder?

A stakeholder is a person, group, or organization actively

involved in a project, is affected by its process or outcome,

or can influence its process or outcome. Stakeholders can be

internal or external to the project team and the developing

organization.

U Waterloo CS445/ECE451/CS645 Winter 2024 4

U Waterloo CS445/ECE451/CS645 Winter 2024 5

Who is the customer?

Customers are a subset of stakeholders. A customer is an individual or

organization that derives either direct or indirect benefits from a product.

Software customers could request, pay for, select, specify, use, or receive the

output generated by a software product.

U Waterloo CS445/ECE451/CS645 Winter 2024 6

The customer-development partnership
• An excellent software product: a well-executed design based on excellent requirements.

• Excellent requirements: effective collaboration between developers and customers.

• A collaborative effort: all parties involved know what they need to be successful and when
they understand what their collaborators need to be successful.

• As project pressures rise, it’s easy to forget that all stakeholders share a common
objective: to build a product that provides adequate business value and rewards to all
stakeholders.

• The business analyst typically is the point person who has to forge(form/make) this
collaborative partnership.

U Waterloo CS445/ECE451/CS645 Winter 2024 7

Requirements Bill of Responsibilities for BA

U Waterloo CS445/ECE451/CS645 Winter 2024 8

You have the responsibility to
1. speak customer language.
2. learn about customer’s business and their objectives.
3. record requirements in an appropriate form.
4. provide explanations of requirements, practices and deliverables.
5. accept change of requirements.
6. maintain an environment of mutual respect.
7. provide ideas and alternatives for customers’ requirements and their solutions.
8. describe characteristics that will make the product easy to use.
9. provide ways to adjust requirements to accelerate development through reuse.
10. provide a system that meets customers’ functional needs and quality
expectations.

The business analyst role

U Waterloo CS445/ECE451/CS645 Winter 2024 9

The business analyst’s tasks
• Define business requirements.
• Plan the requirements approach.
• Identify project stakeholders and user classes.
• Elicit requirements.
• Analyze requirements.
• Document requirements.
• Communicate requirements.
• Lead requirements validation.
• Facilitate requirements prioritization.
• Manage requirements.

U Waterloo CS445/ECE451/CS645 Winter 2024 13

Essential analyst skills
1. Listening skills
2. Interviewing and questioning skills.
3. Thinking on your feet.
4. Analytical skills.
5. Systems thinking skills.
6. Learning skills.
7. Facilitation skills.
8. Leadership skills.
9. Observational skills.
10. Communication skills.
11. Organizational skills.
12. Modeling skills.
13. Interpersonal skills.
14. Creativity

U Waterloo CS445/ECE451/CS645 Winter 2024 14

The cyclic nature of requirements elicitation, analysis,
and specification.

U Waterloo CS445/ECE451/CS645 Winter 2024 15

Activities for a single requirements elicitation session.

U Waterloo CS445/ECE451/CS645 Winter 2024 16

Before we walk through this process, though, let’s explore some of the requirements
elicitation techniques you might find valuable.

Requirements elicitation techniques
1. Interview
2. Workshop
3. Focus Groups
4. Observations
5. Questionnaires
6. System Interface Analysis
7. User Interface Analysis
8. Document Analysis

U Waterloo CS445/ECE451/CS645 Winter 2024 17

Requirements elicitation techniques
1. Interview (The most obvious way to find out what the

users of a software system need is to ask them):
• Establish rapport (a close and harmonious relationship)

• Stay in scope
• Prepare questions (closed and opened)
• Suggest ideas
• Listen actively
• Summing up
• Follow up

U Waterloo CS445/ECE451/CS645 Winter 2024 18

2. Workshop (Workshops encourage stakeholder
collaboration in defining requirements):
• Establish and enforce ground rules
• Fill all of the team roles
• Plan an agenda
• Stay in scope
• Timebox discussions
• Keep the team small but include the right stakeholders
• Keep everyone engaged

U Waterloo CS445/ECE451/CS645 Winter 2024 19

3. Focus groups:
• A focus group is a representative group of users who convene in a

facilitated elicitation activity to generate input and ideas on a focused
product’s functional and quality requirements.
• Focus group sessions must be interactive, allowing all users to voice their

thoughts.
• Focus groups help explore users’ attitudes, impressions, preferences, and

needs
4. Observations:
• When you ask users to describe how they do their jobs, they will likely

have a hard time being precise; details might be missing or incorrect
• Observations are time-consuming.
• Observations can be silent or interactive.

U Waterloo CS445/ECE451/CS645 Winter 2024 20

5. Questionnaires:

• To survey large groups of users/stakeholders to understand their needs.

• They are inexpensive, making them a logical choice for eliciting

information from large user populations, and they can be administered

easily across geographical boundaries.

• The analyzed results of questionnaires can be used as input for other

elicitation techniques.

• You can also use questionnaires to survey commercial product users for

feedback.
U Waterloo CS445/ECE451/CS645 Winter 2024 21

• Preparing well-written questions (answer options) is the biggest
challenge with questionnaires:
• complete the set of possible responses.
• mutually exclusive and exhaustive.
• don’t imply a “correct” answer.
• consistent with scales.
• open-ended questions vs. closed questions.

U Waterloo CS445/ECE451/CS645 Winter 2024 22

6. System interface analysis:

• Reveals functional requirements regarding the exchange of data and services
between systems.

• For each system that interfaces with yours, identify functionality in the other
system that might lead to requirements for your system.

U Waterloo CS445/ECE451/CS645 Winter 2024 23

7. User interface analysis:

• To study existing systems to discover user and functional requirements.
• Can help you identify a complete list of screens to help you discover

potential features.
• It’s a great way to get up to speed on how an existing system works

(unless you need much training).
• Instead of asking users how they interact with the system and what steps

they take, perhaps you can reach an initial understanding yourself.

U Waterloo CS445/ECE451/CS645 Winter 2024 24

8. Document analysis:

• The most helpful documentation includes requirements specifications,
business processes, lessons learned collections and user manuals for existing
or similar applications.
• Documents can describe corporate or industry standards that must be

followed or regulations with which the product must comply.
• Comparative reviews point out shortcomings in other products that you

could address to gain a competitive advantage.
• Problem reports and enhancement requests collected from users by the help

desk and field support personnel can offer ideas for improving the system in
future releases.

U Waterloo CS445/ECE451/CS645 Winter 2024 25

How do you know when you’re done?
• Can’t think of any more use cases or user stories.
• Users propose new scenarios but don’t lead to any new functional

requirements.
• Users repeat issues they already covered in previous discussions.
• Suggested new features, user requirements, or functional requirements are

all deemed to be out of scope.
• Proposed new requirements are all low priority.
• The users are proposing capabilities that might be included “sometime in the

product’s lifetime” rather than “in the specific product we’re talking about
right now.”
• Developers and testers who review the requirements for an area raise a few

questions.

U Waterloo CS445/ECE451/CS645 Winter 2024 26

CS445/ECE 451/CS645
Software Requirements Specifications & Analysis

Elicitation
To elicit means “to bring out, to evoke, to call forth”

U Waterloo CS445/ECE451/CS645 Winter 2024 27

CS 445 / ECE 451 / CS 645
Software Requirements Specifications & Analysis

Introduction

U Waterloo CS445/ECE451/CS645 Winter 2024 1

Grad Student

• …. Who is taking this as CS 645: Please send the instructor an
e-mail during January!
• You will be required to do a 20-30 minute lecture and a

written report on a topic related to the course material
• I am very open to possible topics
• It’s worth 10% of your final grade

• [NOTE TO ALL] Grad lecture material can be on the exam!

U Waterloo CS445/ECE451/CS645 Winter 2024 2

Course project
• To be done in groups of 5, self-chosen
• You will all get the same project grades
• unless your partners think you’re …..

• By 6 am on Tuesday, January 16, each team must e-mail the
instructor with
• Member names
• Project name
• Project description.

U Waterloo CS445/ECE451/CS645 Winter 2024 3

Course project – cont.

• Doing so will allow you to apply the requirements
engineering principles and techniques discussed in lectures
to the problems of eliciting, documenting, and validating the
specification of a non-trivial software system.

U Waterloo CS445/ECE451/CS645 Winter 2024 4

Working in groups

• Don’t just pick your friends
• Consider:
• work habits
• goals
• good organization skills for project coordination
• good writing skills

• Ideally:
• Equitably distribute the workload
• Minimize resentment

U Waterloo CS445/ECE451/CS645 Winter 2024 5

• The purpose of working in groups is to get you used to work
in groups

•Working in groups is a crucial skill for success in the industry.
• It’s also tough to teach or lecture about, so we try to ensure that

you have some exciting experiences.

U Waterloo CS445/ECE451/CS645 Winter 2024 6

• Your project is not a collection of little independent tasks;
instead, there will be several work stages for each
deliverable:
• Discuss and allocate tasks to group members
• Work on tasks (alone or not)
• Distribute draft solutions
• Meet to discuss drafts, evaluate, iterate, and plan
• Revise, evaluate, iterate
• Stitch together final draft and submit

U Waterloo CS445/ECE451/CS645 Winter 2024 7

• Specifying something real is much more interesting than a
mocked-up example.

• Your group will be assigned a TA, who will serve as your
customer and will grade all of your submissions
• And thus, you’ll get some consistency in marking too

U Waterloo CS445/ECE451/CS645 Winter 2024 8

• Your job:
• to create detailed models of the various entities and processes,
• to decide what features should be there,
• to decide the correct functionality of these features,
• eventually, use these models and decisions to create an SRS

describing your software,
• You should be thinking of these as you progress through the

project.
• In other words, you will have to modernize the system

U Waterloo CS445/ECE451/CS645 Winter 2024 9

Master the basics

• You will participate in brainstorming meetings to identify
requirements.
• Your group will decide on a consistent set of requirements

and then model and specify a system with these
requirements in the form of an SRS.

U Waterloo CS445/ECE451/CS645 Winter 2024 10

Notes

• The final deliverable is an SRS
• You will be expected to be serious, creative, and consider

the project as a real case.
• Remember that you don’t have to implement them.

U Waterloo CS445/ECE451/CS645 Winter 2024 11

Important notes when emailing us:

• Number questions and have only one question per number.
• Do not draw and scan deliverables. Using a tool is part of the

difficulties of software engineering.
• Identify yourself (the group name) both on the e-mail (either

subject or body, or both)

U Waterloo CS445/ECE451/CS645 Winter 2024 12

Sources for all lectures

• Previous offering of course notes
• Fowler, UML Distilled, Addison-Wesley, 2004, 3rd edition. (available electronically at

the DC library)
• Jackson, Software Requirements and Specification, ACM Press, 1995.
• Gause and Weinberg, Exploring Requirements, Dorset House, 1989.
• Van Lamsweerde, Requirements Engineering: From Systems Goals to UML Models to

Software Specification, Wiley, 2009.
• Lauesen, Software Requirements: Styles and Techniques, Addison-Wesley, 2002.
• Robertson and Robertson, Mastering the Requirements Process, 2nd ed., Wiley,

2006.
• Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques.

Springer, 2010.
• Karl Wiegers and Joy Beatty, Software Requirements, Third Edition.

U Waterloo CS445/ECE451/CS645 Winter 2024 13

U Waterloo CS445/ECE451/CS645 Winter 2024 14

What is “Requirement” ?

Requirement:

1. A condition or capability needed by a user to solve a problem or
achieve an objective.

2. A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, or other
formally imposed documents.

3. A documented representation of a condition or capability as in (1)
or (2).

[IEEE 610.12-1990 standard]

U Waterloo CS445/ECE451/CS645 Winter 2024 15

What is “requirement”? Cont.

[Requirements encompass both the user’s view of the external
system behavior and the developer’s view of some internal
characteristics. They include both the behavior of the system
under specific conditions and those properties that make the
system suitable—and maybe even enjoyable—for use by its
intended operators.]

Ian Sommerville and Pete Sawyer (1997)

U Waterloo CS445/ECE451/CS645 Winter 2024 16

What is “requirement”? Cont.

“Requirements are a specification of what should be
implemented. They are descriptions of how the system should
behave or of a system property or attribute. They may be a
constraint on the development process of the system.”

Wiegers Karl E. And Beatty Joy
Software Requirements (Developer Best Practices)

U Waterloo CS445/ECE451/CS645 Winter 2024 17

Levels and types of requirements

U Waterloo CS445/ECE451/CS645 Winter 2024 18

U Waterloo CS445/ECE451/CS645 Winter 2024 19

U Waterloo CS445/ECE451/CS645 Winter 2024 20

Trap:

Don’t assume that all your project stakeholders share a
common notion of what requirements are. Establish
definitions up front so that you’re all talking about the same
things.

U Waterloo CS445/ECE451/CS645 Winter 2024 21

What is Requirements engineering?

• To make sure that a software solution correctly solves a
particular problem, we must first correctly understand and
define what problem needs to be solved.

• Figuring out what is the right problem is can be surprisingly
difficult.
• What problem should be solved
• Why such a problem needs to be solved
• Who should be involved in the responsibility of solving that

problem

U Waterloo CS445/ECE451/CS645 Winter 2024 22

U Waterloo CS445/ECE451/CS645 Winter 2024 23

Objectives

System-to-be System-as-is

 Problems,
 opportunities,
domain knowledge

Þ

Services,
constraints,
assumptions

Satisfy

Assigned to

WHY ?

WHAT ?

WHO ? Software-to-be Existing software Devices Persons

Environment

Why Software Fails…
•We waste billions of dollars each year on entirely preventable

mistakes.
•Most IT experts agree that such failures occur far more often than

they should.
• The failures are universal: they happen in every country; to large

companies and small; in commercial, nonprofit, and governmental
organizations; and without regard to status or reputation.
• The business and societal costs of these failures--in terms of the

wasted taxpayer and shareholder dollars and investments that
can't be made--are now well into the billions of dollars a year.

U Waterloo CS445/ECE451/CS645 Winter 2024 24

Why do projects fail so often?

• Unrealistic or unarticulated project goals
• Inaccurate estimates of needed resources
• Badly defined system requirements
• Poor reporting of the project's status
• Unmanaged risks
• Poor communication among customers, developers, and users
• Use of immature technology
• Inability to handle the project's complexity
• Sloppy development practices
• Poor project management
• Stakeholder politics
• Commercial pressures

U Waterloo CS445/ECE451/CS645 Winter 2024 25

Top software failures
Real life examples of software development failures

12 famous ERP disasters, dustups and disappointments

10 Biggest Software Bugs and Tech Fails of 2021

11 of the most costly software errors in history

U Waterloo CS445/ECE451/CS645 Winter 2024 26

https://www.tricentis.com/blog/real-life-examples-of-software-development-failures?utm_source=google&utm_medium=paidsearch&utm_campaign=Blog_Search_DSA_High_AMS_EN&utm_term=&gclid=EAIaIQobChMIyIiVzbfZ-wIVRMCGCh2_uAA6EAAYASAAEgLHxPD_BwE
https://www.cio.com/article/278677/enterprise-resource-planning-10-famous-erp-disasters-dustups-and-disappointments.html
https://www.testdevlab.com/blog/10-biggest-software-bugs-and-tech-fails-of-2021
https://raygun.com/blog/costly-software-errors-history/

Requirements Engineering, roughly…

• Analyze problems with an existing system (system-as-is)
• Identify objectives & opportunities for new system (system-to-be)
• Define functionalities of, constraints on, responsibilities in system-

to-be,
• Specify all of these in a requirements document

System = software + environment

U Waterloo CS445/ECE451/CS645 Winter 2024 27

Requirements in the software lifecycle

U Waterloo CS445/ECE451/CS645 Winter 2024 28

U Waterloo CS445/ECE451/CS645 Winter 2024 29

Impacts on

Requirements
Document

Project estimations
(size, cost, schedules)

Project workplan

Software prototype,
mockup

Follow-up directives

Software architecture

Call for tenders,
proposal evaluation

Quality Assurance
checklists

Project contract

Software evolution
directives

Software documentation

Acceptance test data

Implementation
directives

User manual

Waterfall

U Waterloo CS445/ECE451/CS645 Winter 2024 30

Agile

U Waterloo CS445/ECE451/CS645 Winter 2024 31

RE: Waterfall vs. Agile

U Waterloo CS445/ECE451/CS645 Winter 2024 32

U Waterloo CS445/ECE451/CS645 Winter 2024 33

U Waterloo CS445/ECE451/CS645 Winter 2024 34

U Waterloo CS445/ECE451/CS645 Winter 2024 35

U Waterloo CS445/ECE451/CS645 Winter 2024 36

U Waterloo CS445/ECE451/CS645 Winter 2024 37

Why RE is hard?

• Broad scope

•Multiple concerns

•Multiple abstraction levels

•Multiple stakeholders

• Additional activities during the process

U Waterloo CS445/ECE451/CS645 Winter 2024 38

Why RE is important

• Legal impact

• Social impact

• Technical impact

• Impact on certification

• Impact on economy, security, and safety

U Waterloo CS445/ECE451/CS645 Winter 2024 39

Requirements error are the most dangerous software
errors

1. IranAir A300 Airbus was shot by US Vincennes in July 1988
2. First version of London ambulance dispatching system, with two

tragic failures of the system (Oct-Nov 1992)
3. The Crash of an American Airlines Boeing 757 in Cali on Dec 1995
4. New York subway crash on June 1995
5. Ariane 5 Rocket failure

U Waterloo CS445/ECE451/CS645 Winter 2024 40

Statistics from NIST Report
• NIST (National Institute of Standards and Technology) has published

a report on project statistics and experiences based on data from a
large number of software projects1

• 70% of the defects are introduced in the specification phase
• 30% are introduced later in the technical solution process
• Only 5% of the specification inadequacies are corrected in the specification

phase
• 95% are detected later in the project or after delivery where the cost for

correction on average is 22 times higher compared to a correction directly
during the specification effort
• The NIST report concludes that extensive testing is essential, however

testing detects the dominating specification errors late in the process
[1] http://www.nist.gov/public_affairs/releases/n02-10.htm (May 2002)

U Waterloo CS445/ECE451/CS645 Winter 2024 41

Requirements Engineering Activities

U Waterloo CS445/ECE451/CS645 Winter 2024 42

Elicitation Analysis Specification Verification

Requirements
Inception

Requirements
Management

Requirements Engineering

Requirements
Development

Functional vs. Non-functional requirements

• A functional requirement is a requirement defining functions

of the system under development

• Describes what the system should do

• A non-functional requirement is a requirement that is not

functional. This includes many different kinds of

requirements.

U Waterloo CS445/ECE451/CS645 Winter 2024 43

Functional Requirements

•What inputs should the system accept
•What outputs should the system produce
•What data should the system store other systems might use
•What computations should the system perform
• The timing and synchronization of the above

• Depend on the type of software, expected users, and the
type of system where the software is used

U Waterloo CS445/ECE451/CS645 Winter 2024 44

Non-Functional Requirements (NFR)

• Non-functional requirements are important
• If they are not met, the system is useless
• Non-functional requirements may be challenging to state precisely

(especially at the beginning), and imprecise requirements may be
difficult to verify

• They are sometimes called quality requirements, quality of
service, or extra-functional requirements.
•Will talk about them in detail later on in the term!

U Waterloo CS445/ECE451/CS645 Winter 2024 45

Errors in a requirements document (RD)

• Omission: problem world feature not stated by any RD item
e.g. no requirements about the state of train doors in case of an emergency stop

• Contradiction: RD items stating a problem world feature in an incompatible way
“Doors must always be kept closed between platforms.”
and “Doors must be opened in case of an emergency stop”

• Inadequacy: RD item not adequately stating a problem world feature
“Panels inside trains shall display all flights served at the next stop.”

• Ambiguity: RD item allowing a problem world feature to be interpreted in different ways
“Doors shall be open as soon as the train is stopped at the platform.”

• Un-measurability: RD item stating a problem world feature in a way precluding option
comparison or solution testing

“Panels inside trains shall be user-friendly.”

U Waterloo CS445/ECE451/CS645 Winter 2024 46

Flaws in a requirements document (RD)

• Noise: RD item yielding no information on any problem world feature (Variant:
uncontrolled redundancy)
“Non-smoking signs shall be posted on train windows.”

• Overspecification: RD item stating a feature not in the problem world but in the machine
solution
“The setAlarm method shall be invoked on receipt of an Alarm message.”

• Unfeasibility: RD item not implementable within budget/schedule

“In-train panels shall display all delayed flights at the next stop.”

• Unintelligibility: RD item is incomprehensible to those needing to use it

A requirement statement containing five acronyms

• Poor structuring: RD items are not organized according to any sensible or visible
structuring rule

Requirements that do not follow a structural rule (paragraphs, bullet points, subject-verb-object, ”shall”)
U Waterloo CS445/ECE451/CS645 Winter 2024 47

Flaws in a requirements document (2)

• Forward reference: RD item making use of problem world features not
defined yet
Multiple uses of the concept of worst-case stopping distance appear several pages after in the RD before its
definition

• Remorse: RD item stating a problem world feature lately or incidentally
After multiple uses of the undefined concept of worst-case stopping distance, the last one is directly followed by an
incidental definition between parentheses

• Poor modifiability: RD items whose changes must be propagated
throughout the RD
Use of fixed numerical values for quantities subject to change

• Opacity: RD item whose rationale, authoring or dependencies are invisible
“The commanded train speed must always be at least seven mph above physical speed” without any explanation of
the rationale for this

U Waterloo CS445/ECE451/CS645 Winter 2024 48

Course Goals

• To understand the stakeholders’ needs and expectations
• Users, clients, etc.

• To determine the software system’s requirements

• To document the software system’s requirements

U Waterloo CS445/ECE451/CS645 Winter 2024 49

Requirements Engineering Process

U Waterloo CS445/ECE451/CS645 Winter 2024 50

CS 445 / ECE 451 / CS 645
Software Requirements Specifications & Analysis

Introduction

U Waterloo CS445/ECE451/CS645 Winter 2024 51

