CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Documentation

Requirements Engineering Process

Software
Elicitation > Analysis —>| Specification —>| Validation > Rse;eucnrfe‘?oefn;a
(SRS)
Collecting Understandi Documenting the Checking that our
the users’ and modeling the behaviour of the specification
requirements desired behavior proposed software matches the users’
system requirements

UWaterloo CS445/ECE451/CS645 Winter 2024

SRS - Software Requirements Specification

* States the functions and capabilities a software system must provide,
its characteristics, and the constraints it must respect.

 Should describe as thoroughly as necessary the system’s behaviours
under various conditions, as well as desired system qualities such as
performance, security, and usability.

* |s the basis for subsequent project planning, design, and coding and
the foundation for system testing and user documentation.

* |t should not contain design, construction, testing, or project
management details other than known desigh and implementation
constraints.

UWaterloo CS445/ECE451/CS645 Winter 2024 3

What is it useful for?

* Customers, the marketing department, and sales staff need to know
what product they can expect to be delivered.

* Project managers base their estimates of schedule, effort, and
resources on the requirements.

» Software development teams need to know what to build.

* Testers use it to develop requirements-based tests, test plans, and
test procedures.

* Maintenance and support staff use it to understand what each part of
the product is supposed to do.

What is it useful for?

* Documentation writers base user manuals and help screens on the
SRS and the user interface design.

* Training personnel use the SRS and user documentation to develop
educational materials.

 Legal staff ensures that the requirements comply with applicable
laws and regulations.

 Subcontractors base their work on, and can be legally held to, the
specified requirements.

Organize, Organize, Organize

* Use an appropriate template to organize all the necessary
information.

 Label and style sections, subsections, and individual requirements
consistently.

 Use visual emphasis (bold, underline, italics, colour, and fonts)
consistently and judiciously. Remember that colour highlighting might
not be visible to people with colour blindness or when printed in
grayscale.

* Create a table of contents to help readers find the necessary
information.

* Number all figures and tables, give them captions and refer to them
by number.

UWaterloo CS445/ECE451/CS645 Winter 2024 6

Organize, Organize, Organize

* |If you are storing requirements in a document, define your word
processor’s cross-reference facility rather than a hard-coded page or
section numbers to refer to other locations within a document.

* |If you use documents, define hyperlinks to let the reader jump to
related sections in the SRS or other files.

* If you store requirements in a tool, use links to let the reader
navigate related information.

* Include visual representations of information when possible to
facilitate understanding.

e Enlist a skilled editor to ensure the document is coherent and uses a
consistent vocabulary and layout.

A Software Requirements Specification Template

1. Introduction
1.1.Purpose
1.2.Scope
1.3.Definitions, Acronyms and Abbreviations
1.4.References
1.5.0verview
2. Overall Description
2.1.Product Perspective
2.2.Product Functions
2.3.User Characteristics
2.4.Constraints
2.5.Assumptions
2.6.Apportioning of Requirements

3. Specific Requirements
3.1.External Interface Requirements
3.1.1.User Interfaces
3.1.2.Hardware Interfaces
3.1.3.5oftware Interfaces
3.1.4.Communication Interfaces
3.2.System Features
3.2.1.[Feature 1]
3.2.1.1.Purpose
3.2.1.2.Response Sequence
3.2.1.3.Functional Requirements
3.3.Performance Requirements
3.4.Design Constraints
3.5.5oftware System Attributes
3.6.0ther Requirements
Appendix
Index

Note

All examples are related to the same system.

The set of examples in each section is not complete. Make sure you
write a complete set of requirements for each section.

1. Introduction

The introduction presents an overview to help the reader understand
how the SRS is organized and how to use it.

1.1 Purpose

1.2 Scope
1.3 Definitions, Acronyms and Abbreviations

1.4 References
1.5 Overview

1.1 Purpose

* |dentify the product or application whose requirements are specified
in this document, including the revision or release number.

* |f this SRS pertains to only part of a complex system, identify that
portion or subsystem.

» Describe the different types of readers that the document is
intended for, such as developers, project managers, marketing staff,
users, testers, and documentation writers.

Example

1.1 Purpose

This SRS describes the functional and non-functional requirements for
software release 1.0 of the web-based e-catalog for cataloging
physical and virtual items that are to be filed or stored away. This
document is intended to be used by the project team members who
will implement and verify the correct functioning of the system. All
requirements listed are committed for release 1.0.

1.2 Scope

* Provide a short description of the software being specified and its
purpose.

 Relate the software to the user or corporate goals, business
objectives, and strategies.

* |f a separate vision and scope or similar document are available,
refer to it rather than duplicate its contents here.

* An SRS that specifies an incremental release of an evolving product
should contain its scope statement as a subset of the long-term
strategic product vision.

* You might provide a high-level summary of the release's major
features or the significant functions it performs.

Example

1.2 Project Scope

The e-catalog will permit client administrators to build a catalogue of
physical and virtual items for registered users to discover and check in/
out. Physical items must be checked out from one of the item processing
facilities, and once it is time to check in, the item can be mailed in or
dropped off at the facility.

The e-catalog uses electronic IDs as barcodes to identify and monitor
item status. Administrators can sort items into categories, and registered
users can associate customizable labels with items and containers for
easy identification. This web-based e-catalog, which can be used on
desktop and mobile, provides an efficient and convenient way to retrieve
and catalogue documents and items. A detailed project description is
available in the E-catalog Product Vision and Scope Document [1].

1.3 Definitions, Acronyms and Abbreviations

* Describe any standards or typographical conventions used, including
the meaning of specific text styles, highlighting, or notations.

* |If you are manually labelling requirements, you might specify the
format here for anyone who needs to add one later.

* Define any specialized terms that a reader needs to know to
understand the SRS, including acronyms and abbreviations.

* Spell out each acronym and provide its definition.

 Consider building a reusable enterprise-level dictionary that spans
multiple projects and incorporates by reference any terms that
pertain to this project.

« Each SRS would then define only those terms specific to an individual
project that do not appear in the enterprise-level dictionary.

Example

1.3 Definitions, Acronyms and Abbreviations
This document uses the following conventions:

1. Features will be documented with a description, a priority, and a
set of functional requirements.

2. New features or features with new requirements will be denoted
using the notation: (NEW).

3. “User” in System Features refers to the administrator and
registered users.

4. If a data type is stated as String (alpha), this means only strings
consisting of alphabet characters are permitted.

Example

5. If a data type is stated as a String (alphanumeric), this means
strings consisting of the alphabet and numeric characters are
permitted.

6. If a data type is stated as String, this means all string values are
permitted unless there are additional constraints specified.

/. If no length is permitted for a data type, there is no length
restriction.

8. In the State Machine Diagram Descriptions in the Appendix, events
are bolded and grouped by large grouping states, and conditions are
italicized.

1.4 References

* List any documents or other resources to which this SRS refers.
Include hyperlinks to them if they are in a persistent location.

* These might include user interface style guides, contracts, standards,
system requirements specifications, interface specifications, or the
SRS for a related product.

* Provide enough information so the reader can access each reference,
including its title, author, version number, date, source, storage
location, or URL.

Example:

1.4 References

1. Wiegers, Karl. Cafeteria Ordering System Vision and Scope
Document, www.processimpact.com/projects/COS/CQOS Vision and

Scope.docx

2. Beatty, Joy. Process Impact Intranet Development Standard, Version
1.3, www.processimpact.com/corporate/standards/Pl Intranet

Development Standard. pdf

3. Rath, Andrew. Process Impact Internet Application User Interface
Standard, Version 2.0, www.processimpact.com/corporate/standards/

Pl Internet Ul Standard.pdf

UWaterloo CS445/ECE451/CS645 Winter 2024 19

http://www.processimpact.com/projects/COS/COS%20Vision%20and%20Scope.docx
http://www.processimpact.com/projects/COS/COS%20Vision%20and%20Scope.docx
http://www.processimpact.com/projects/COS/COS%20Vision%20and%20Scope.docx
http://www.processimpact.com/projects/COS/COS%20Vision%20and%20Scope.docx
http://www.processimpact.com/corporate/standards/PI%20Intranet%20Development%20Standard.pdf
http://www.processimpact.com/corporate/standards/PI%20Intranet%20Development%20Standard.pdf
http://www.processimpact.com/corporate/standards/PI%20Intranet%20Development%20Standard.pdf

1.5 Overview

This subsection should
a) Describe what the rest of the SRS contains;
b) Explain how the SRS is organized.

Example

1.5 Overview

The remainder of this SRS describes the system features and
requirements. This SRS document is organized as follows. Section 2
includes...

2. Overall Description

This section presents a high-level overview of the product, the
environment in which it will be used, the anticipated users, and known
constraints, assumptions, and dependencies.

2.1 Product Perspective

2.2 Product Functions

2.3 User Characteristics

2.4 Constraints

2.5 Assumptions and Dependencies
2.6 Apportioning of Requirements

2.1 Product Perspective

* Describe the product’s context and origin. Is it the next member of a
growing product line, the next version of a mature system, a
replacement for an existing application, or an entirely new product?

* |If this SRS defines a component of a larger system, state how this

software relates to the overall system and identify major interfaces
between the two.

 Consider including visual models such as a context diagram to show
the product’s relationship to other systems.

Example

2.1 Product Perspective

The e-catalog system is a new, self-contained web-based database
system implemented for the client company. The client company will
sell it to other companies to replace the latter’s manual task of
cataloging physical and virtual items. The context diagram in Figure
2.1 illustrates the external entities and system interfaces for release
1.0. The system is expected to evolve over several releases, ultimately
allowing one to check the location of an item via virtual reality before
going there.

Example

Unregistered User

tem list item/label na

reg'strgtion container ﬁlﬁ\
item status information

notification delete user category list
request tem mformatlon
new tem Registered User
mfonnamn search results

check out
Administrator he confirmatio
tem check in
\ e confirmation

delete container E-catalog System intual tem tem check in
request inqui notification

new container tem report
information
registered reported
users list tem list
reported tem lis!
(’— inquiry generate
generated r:’:";t
inquiry report
C“““;‘;;ﬁ"ppon / response Legal Agent

Financial Analyst

Figure 2.1: Context diagram for release 1.0 of e-catalog

UWaterloo CS445/ECE451/CS645 Winter 2024

25

2.2 Product Functions

This subsection of the SRS should provide a summary of the major
functions that the software will perform.

UWaterloo CS445/ECE451/CS645 Winter 2024

26

Example

2.2 Product Functions

The software provides customer account maintenance and invoice
preparation. In addition,...

2.3 User Characteristics

* |dentify the various user classes you anticipate will use this product
and describe their pertinent characteristics.

* Some requirements might
|dentify the favoured user

pertain only to specific user classes.
classes. User classes represent a subset of

the stakeholders described in the vision and scope document.
 User class descriptions are a reusable resource.

* If a master user class catalogue is available, you can incorporate user
class descriptions by simply pointing to them in the catalogue instead

of duplicating information

here.

Example

2.3 User Characteristics

Registered users are the target audience of this system, but the
system can be targeted toward other users as well. Table 2.2 below
discusses the user classes of the e-catalog system and their
characteristics.

Table 2.2: User classes and characteristics of the e-catalog system

Registered
User
(favoured)

Registered users are tech-savvy individuals who are over 13 years of age and
access the system at least once a day. On average, 1000 registered users are
expected to use the system in a day. They can browse and search the system to
find 1tems of interest and check in and check out multiple items at a time.
They can also add and remove labels to items and containers to make them
easy to find. Additionally, they can view item information, report items, and
inquire about them. They can also view container information as well as item
listings. They can have different educational backgrounds. They would check
in and check out items at least once a week. They will have mimnimum tramning
to show them what exists where 1n the system.

Unregistered
User

Unregistered users can only sign up for an account with the system and are
expected to access the system once a year. On average, 10,000 unregistered
users are expected to use the system in a day. They cannot access any of the
functions of the system. They can be of varymng technical expertise and
education level.

Administrator

The system 1s expected to have only one admunistrator. Administrators are
tech-savvy individuals who will be using the system eight hours on average.
They are responsible for managing items, users and containers. They also
review reported items and resolve the problems related to those items. They
can perform all functions of a registered user except for adding and removing
labels. They would require some prior training before using the system.

UWaterloo CS445/ECE451/CS645 Winter 2024

30

Financial
Analyst

Financial analysts are experienced economusts with a degree. They will be
using the system eight hours on average. On average, one financial analyst 1s
expected to use the system in a day. They use the system to generate and view
reports. They have the minimal technical expertise required to use the system.
They would require some prior training before using the system.

Legal Agent

Legal agents are experienced lawyers with legal licenses and previous
training. They will be using the system eight hours on average. On average, 2
legal staff are expected to use the system in a day. Their job 1s to review
reported items (either missing or illegal) from the system and resolve the
1ssues. They have the minimal technical expertise required to use the system.
They would require some prior training before using the system.

Customer
Support Agent

Customer support agents do not hold a degree, but can speak either English or
French or both. They will be using the system eight hours on average. On
average, 5 customer support agents are expected to use the system in a day.
They use the system to review user inquiries and reply to those inquiries.
They have the mimimal technical expertise required to use the system. They
would require some prior training before using the system.

UWaterloo CS445/ECE451/CS645 Winter 2024

31

2.4 Constraints

This subsection of the SRS should provide a general description of any other items that
will limit the developer’s options. These include:

a) Regulatory policies;

b) Hardware limitations (e.g., signal timing requirements)
c) Interface to other applications;

d) Parallel operation;

e) Audit functions;

f) Control functions;

g) Higher-order language requirements;

h) Sighal handshake protocols (e.g., XON-XOFF, ACK-NACK);
i) Reliability requirements;

j) Criticality of the application;

k) Safety and security considerations.

Example

2.4 Constraints

The software must follow the regulatory policies listed below:

Because of the possible harm that the software can cause to human

life, the following safety measures need to be incorporated at the
development level:

2.5 Assumptions and Dependencies

* An assumption is a statement that is believed to be true in the
absence of proof or definitive knowledge.

* Problems can arise if assumptions are incorrect, obsolete, not
shared, or change so that certain assumptions will translate into
project risks.

* One SRS reader might assume that the product will conform to a
particular user interface convention, whereas another might assume
something different.

* A developer might assume that a particular set of functions will be
custom-written for this application. In contrast, the business analyst
might think they will be reused from a previous project, and the
project manager might expect to procure a commercial function
library.

* The assumptions to include here are those related to system
functionality; business-related assumptions appear in the vision and
scope document

* |dentify any dependencies the project or system being built has on
external factors or components outside its control. For instance, if
Microsoft .NET Framework 4.5 or a more recent version must be
installed before your product can run, that’s a dependency.

Example

2.5 Assumptions and Dependencies

* AS-1: When registered users select to check in an item, either by
drop-off or delivery, they do so immediately.

* AS-2: Permissions are only checked when a registered user attempts
to check out an item.

» AS-3: Registered users have to check in an item to the facility they
had checked it out from.

* DE-1: The check in and check out operations of the e-catalog system
is dependent on barcode readers.

2.6 Apportioning of Requirements

This subsection of the SRS should identify requirements that may be
delayed until future versions of the system.

UWaterloo CS445/ECE451/CS645 Winter 2024 37

Example

2.6 Apportioning of Requirements

The software is planned to include a major user viewing functionality
after months of its release.

Payment using biometric confirmation is an expected functionality for
future releases of the software.

3. Specific Requirements

* The SRS template discussed shows functional requirements organized
by system feature, which is just one possible way to arrange them.

* Other organizational options include arranging functional
requirements by functional area, process flow, use case, mode of
operation, user class, stimulus, and response.

» Hierarchical combinations of these elements, such as use cases
within user classes, are also possible.

* There is no single correct choice; select a method of organization
that makes it easy for readers to understand the product’s intended
capabilities.

3.1 External Interface Requirements

* This section provides information to ensure that the system
communicates appropriately with users and external hardware or
software elements. Reaching agreement on external and internal
system interfaces has been identified as a software industry best
practice (Brown 1996).

* 3.1.1 User Interfaces

* 3.1.2 Hardware Interfaces
 3.1.3 Software Interfaces

* 3.1.4 Communications Interfaces

3.1.1 User Interfaces

Describe the logical characteristics of each user interface that the
system needs. Some possible items to address here are:

» References to user interface standards or product line style guides
that are to be followed

 Standards for fonts, icons, button labels, images, colour schemes,
field tabbing sequences, commonly used controls, branding graphics,
copyright and privacy notices, and the like

 Screen size, layout, or resolution constraints

 Standard buttons, functions, or navigation links that will appear on
every screen, such as a help button

3.1.1 User Interfaces

 Shortcut keys
* Message display and phrasing conventions

 Data validation guidelines (such as input value restrictions and when
to validate field contents)

 Layout standards to facilitate software localization

« Accommodations for users who are visually impaired, colour blind, or
have other limitations

Example

3.1.1 User Interfaces

Ul-1: The user interface shall contain the following accessibility
requirements:

Ul-1.1: The system provides a wheelchair accessibility flag to indicate
that a location is wheelchair accessible.

Ul-1.2: All keyboard shortcut keys are permitted for use throughout
the whole system.

Ul-2: The user interface shall contain the following resolution
requirements:

Ul-2.1: The desktop web application runs ideally in 1080p.
Ul-2.2: The mobile web application runs ideally in 750p.

3.1.2 Hardware Interfaces

* Describe the characteristics of each interface between the system’s
software and hardware components, if any.

* This description might include the supported device types, the data
and control interactions between the software and the hardware,
and the communication protocols to be used.

e List the inputs and outputs, their formats, their valid values or
ranges, and any timing issues developers need to be aware of.

* |If this information is extensive, consider creating a separate
interface specification document.

Example

3.1.2 Hardware Interfaces
No hardware interface requirements have been identified.

3.1.3 Software Interfaces

* Describe the connections between this product and other software
components (identified by name and version), including other
applications, databases, operating systems, tools, libraries, websites,
and integrated commercial components.

 State the purpose, formats, and contents of the messages, data, and
control values exchanged between the software components.

 Specify the mappings of input and output data between the systems
and any translations needed for the data to get from one system to
the other.

3.1.3 Software Interfaces

 Describe the services needed by or from external software
components and the nature of the inter-component communications.

* |dentify data that will be exchanged between or shared across
software components.

* Specify nonfunctional interface requirements, such as service levels
for response times and frequencies or security controls and
restrictions.

Example

3.1.3 Software Interfaces
The system will contain the following interactions with the listed external software:
SI-1: MySQL

SI-1.1: The system will interact with MySQL, a SQL based database relational database
management system (DBMS) which will backup information once a month or prior to a major
upgrade.

SI-1.2: The system will interact with MySQL by following the listed protocol
SI-1.2.1: The user creates a request with the application.

SI-1.2.2: The application’s external schema acknowledges the request and forwards the
request to the conceptual schema.

SI-1.2.3: The application’s conceptual schema acknowledges the request and forwards the
request to the physical schema.

SI-1.2.4: The application’s physical schema acknowledges the request and forwards the
request to the MySQL server.

SI-1.3: The system sends a payload to the MySQL server similar to the one listed below. Figure
5.1 below is an example of the payload when a new user is saved into the database:

Example

.

“name”: “Hens-Test”,

“email™: “Hens-Test12345@test.com,
“password™: “abc123",

“userld™ *12345678907,
“sessionStartTime™: 12007,

userName™ “hens test™,

..

A successful return response from MySQL to the server:

|
1

statusCode: 200;
statusMessage: “{user id} has been updated™;

—

An invalid input return response from MySQL to the server:

(
1

statusCode: 400;
statusMessage: “Bad Request - Please enter a valid
user id”

—

Figure 5.1: Sample pavioad sent to MySQL fo insert a new user into the database

UWaterloo CS445/ECE451/CS645 Winter 2024

49

3.1.4 Communications Interfaces

* State the requirements for any communication functions the product
will use, including email, web browser, network protocols, and
electronic forms.

» Define any pertinent message formatting.

 Specify communication security and encryption issues, data transfer
rates, handshaking, and synchronization mechanisms.

 State any constraints around these interfaces, such as whether
certain types of email attachments are acceptable.

Example

3.1.4 Communications Interfaces

Cl-4: The system will contain the following requirements in regard to
notifications:

Cl-4.1: The system will send notifications to users 24 hours prior to the check
in date.

Cl-4.2: Notifications will list the items and the time that the item must be
returned by.

CI-5: The system will send an internal email to the customer support agent
when a user files a request.

CI-5.1: This email will allow attachments of no more than 10MB.

Cl-6: The system will send an internal email to the legal agent when an item is
reported.

Cl-6.1: This email will allow attachments of no more than 10MB.

3.2 System Features

* 3.2.1 [Feature 1]
* 3.2.1.1 Purpose
« 3.2.1.2 Response Sequence
 3.2.1.3 Functional Requirements

UWaterloo CS445/ECE451/CS645 Winter 2024

52

Example

3.2 System Features
3.2.1 Sign Up for an Account
3.2.1.1 Purpose

An unregistered user of the e-catalog system may select to sign up for
an account, which will give them access to the main features of the e-
catalog as described below. Priority = High.

3.2.1.2 Response Sequence
3.1.2 Functional Requirements

R-1: Only an unregistered user with a valid email address should be
able to sign up for an account.

R-2: An unregistered user must choose a unique username when signing
up for an account.

Example

3.2.2 Add a Label
3.2.2.1 Purpose

A registered user may select to add a label to an item or a container.
Priority = Medium.

3.2.2.2 Response Sequence
3.2.2.3 Functional Requirements

R-1: A registered user should only be able to view the labels that they
have added to an item or container.

R-2: A registered user should be able to add a unique label to an item.
R-3: A registered user should be able to add a label to a container (NEW).

R-4: Only a registered user should be able to add a label to an item or
container.

3.3 Performance Requirements

* This subsection should specify both the static and the dynamic
numerical requirements placed on the soft- ware or on human
interaction with the software as a whole.

Example

3.3 Performance Requirements

PR1 The system should return the required information in at most 10
milliseconds.

PR2 95% of the transactions shall be processed in less than 1s.

3.4 Design Constraints

* This should specify design constraints that can be imposed by other
standards, hardware limitations, etc.

UWaterloo CS445/ECE451/CS645 Winter 2024 57

Example

3.4 Design Constraints
DC1 - E-mail based solutions are forbidden.
DC2 - The software cost cannot exceed a million dollars.

3.5 Software System Attributes

* This section specifies nhonfunctional requirements other than
constraints, which are recorded in Section 2.4, and external
interface requirements, which appear in Section 3.1.

* These quality requirements should be specific, quantitative, and
verifiable. Indicate the relative priorities of various attributes, such
as ease of use over ease of learning or security over performance.

* A rich specification notation clarifies the needed levels of each
quality much better than can simple descriptive statements.

3.5 Softare System Attributes

3.5.1 Usability
3.5.2 Security
3.5.3 Safety

3.5.4 Availability
3.5.5 Integrity
3.5.6 Reliability
3.5.7 Efficiency
3.5.8 Robustness
3.5.9 Modifiability
3.5.10 Reusability
3.5.11 Scalability
3.5.12 Verifiability

UWaterloo CS445/ECE451/CS645 Winter 2024

60

Example

3.5 Software System Attributes
More than 50% of users should consider the software easy to use.

The software should run with at most a 30 millisecond delay when
more than 10,000 users are connected simultaneously.

3.6 Other Requirements

* Define any other requirements that are not covered elsewhere in the
SRS.

« Examples are legal, regulatory, or financial compliance and standards
requirements; requirements for product installation, configuration,
startup, and shutdown; and logging, monitoring, and audit trail
requirements.

* Instead of just combining these all under “Other”, add any new sections
to the template that are pertinent to your project. Omit this section if
all your requirements are accommodated in other sections.

 Transition requirements necessary for migrating from a previous system
to a new one could be included here if they involve software being
written (as for data conversion programs) or in the project management
plan if they do not (as for training development or delivery).

Example

3.6 Other Requirements
3.6.1 Legal Requirements

L-2: Items that are returned defective or damaged in any manner may result in the
user account being charged for full replacements, which is handled beyond the
scope of the system.

3.6.2 Regulatory Requirements

R-1: The system shall provide the following accessibility features to abide by
Canadian law.

3.6.3 Financial Requirements
3.6.4 Transition Requirements
T-1: The system must follow the transition requirements in the order stated below:

T-1.1: Prior to system updates, the production code must be pushed onto a test
server in which a quality analysis is performed initially by the QA team.

Example

3.6.5 Installation Requirements
3.6.6 Logs
3.6.6.1 Logging

L-1: All activities of users interacting with the system shall be logged
into respective text files containing the following information:

L-1.1: Name, username...
3.6.6.2 Monitoring

M-2: System logs shall be monitored every month by the QA team
except for immediate security issues.

3.6.6.3 Auditing
A-2: System logs shall be audited by the admin.

Appendix

* This optional section includes or points to pertinent analysis models
such as data flow diagrams, feature trees or entity-relationship
diagrams.

« Often, it is more helpful for the reader to incorporate specific
models into the relevant sections of the specification instead of
collecting them at the end.

* Include any additional table, diagrams, etc that you created for the
final SRS.

Example

Appendix
Details about the decision of lowering the security of the system - ...
Explanation of Al models - ...

Characteristics of Excellent Requirements

» Characteristics of requirement statements
» Characteristics of requirements collections

UWaterloo CS445/ECE451/CS645 Winter 2024 67

Characteristics of Requirement Statements

« Complete

* Correct

* Feasible

* Necessary

* Prioritized

« Unambiguous
* Verifiable

UWaterloo CS445/ECE451/CS645 Winter 2024 68

Characteristics of Requirements Collections

« Complete
e Consistent

* Modifiable
 Traceable

UWaterloo CS445/ECE451/CS645 Winter 2024 69

Tips

* Clarity and conciseness. Write requirements in complete sentences
using proper grammar, spelling, and punctuation. Keep sentences and
paragraphs short and direct. Write requirements in simple language
appropriate to the user domain, avoiding jargon. Define specialized
terms in a glossary.

* The keyword “shall”. A traditional convention uses the keyword
“shall” to describe some system capability.

 Active voice. Write in the active voice to make it clear what entity is
taking action described.

* Individual requirements. Avoid writing long narrative paragraphs
that contain multiple requirements.

Tips

« Appropriate detail. An important part of requirements analysis is
decomposing a high-level requirement into sufficient detail to clarify
and flesh it out. There’s no single correct answer to the commonly
asked question “How detailed should the requirements be?”. Provide
enough specifics to minimize the risk of misunderstanding based on
the development team’s knowledge and experience.

* Representation techniques. Readers’ eyes glaze over when
confronting a dense mass of turgid text or a long list of similar-
looking requirements. Consider the most effective way to
communicate each requirement to the intended audience. Some
alternatives to the natural language requirements we’re used to are
lists, tables, visual analysis models, charts, mathematical formulas,
photographs, sound clips, and video clips.

Ambiguity

* Avoid.
* Fuzzy words.

UWaterloo CS445/ECE451/CS645 Winter 2024

72

Ambiguity

Ambiguous Terms

acceptable, adequate

and/or

as much as practicable

at least, at a minimum,
not more than, not to
exceed

best, greatest, most

between, from X to Y

Ways To Improve Them

Define what constitutes acceptability and how the system can
judge this.

Specify whether you mean "and”, “or", or "any combination of" so
the reader does not have to guess.

Do not leave it up to the developers to determine what is
practicable. Make it a "to be decided” and set a date to find out.

Specify the minimum and maximum acceptable values.

State what level of achievement is desired and the minimum
acceptable level of achievement.

Define whether the end points are included in the range.

UWaterloo CS445/ECE451/CS645 Winter 2024

73

Ambiguity

Ambiguous Terms

depends on

efficient

fast, quick, rapid

flexible, versatile

improved, better, faster,
superior, higher quality

Ways To Improve Them

Describe the nature of the dependency. Does another system
provide input to this system, must other software be installed
before your software can run, or does your system rely on
another to perform some calculations or provide other services?

Define how efficiently the system uses resources, how quickly it
performs specific operations, or how quickly users can perform
tasks with the system.

Specify the minimum acceptable time in which the system
performs some action.

Describe the ways in which the system must be able to adapt to
changing operating conditions, platoforms, or business needs.

Quantify how much better or faster constitutes adequate
improvement in a specific functional area or quality aspect.

UWaterloo CS445/ECE451/CS645 Winter 2024

74

Ambiguity

including, including but
not limited to, and so on,
etc., such as, for instance

in most cases, generally,
usually, almost always

match, equals, agree, the
same

maximize, minimize,
optimize

normally, ideally

List all possible values or functions, not just examples, or refer
the reader to the location of the full list. Otherwise, different
readers might have different interpretations of what the whole
set of items being referred to contains or where the list stops.

Clarify when the stated conditions or scenarios do not apply and
what happens then. Describe how either the user or the system
cand distinguish one case from the other

Define whether a text comparison is case sensitive and whether
it means the phrase "contains”, “starts with", or is "exact”. For
real numbers, specify the degree of precision in the comparison.

State the maximum and minimum acceptable values or some
parameter.

Identify abnormal or non-ideal conditions and describe how the
system should behave in those situations.

Ambiguity

Ambiguous Terms

optionally

probably, ought to, should

reasoable when necessary,
where appropriate, if
possible, as applicable

robust

seamless, transparent,
graceful

several,some, many, few,
multiple, numerous

Ways To Improve Them

Clarify whether this means a developer choice, a system choice,
or a user choice.

Will it or will it not?

Explain how either the developer or the user can make this
judgement.

Define how the system is to handle exceptions and respond to
the unexpected operating conditions.

What does "seamless” or "graceful” mean to the user? Translate
the user's expectations into specific observable product
characteristics.

State how many, or provide the minimum and maximum bounds
of a range.

UWaterloo CS445/ECE451/CS645 Winter 2024

76

Ambiguity

Ambiguous Terms

shouldn't, won't

state-of-the-art
sufficient

support, enable

user-friendly, simple, easy

Ways To Improve Them

Try to state requirements as positives, describing what the
system will do.

Define what this phrase means to the stakeholder.
Specify how much of something constitutes sufficiency.

Define exactly what functions the system will perform that
constitute "supporting” some capability.

Describe system characteristics that will satify the customer’s
usage needs and usability expectations.

UWaterloo CS445/ECE451/CS645 Winter 2024

77

Ambiguity

* The A/B construct. Many requirements specifications include

expressions in the form “A/B”, in which two related (or synonymous,
or opposite) terms are combined with a slash.

* Boundary values. Many ambiguities occur at the boundaries of
numerical ranges in both requirements and business rules.

* Negative requirements. People sometimes write requirements that
say what the system will not do rather than what it will do. How do
you implement a don’t-do-this requirement? Double and triple
negatives are particularly tricky to decipher. Try to rephrase negative

requirements into a positive sense that clearly describes the
restricting behaviour.

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Documentation

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Validation and Verification

Requirements Engineering Process

RN

Software
Requirements

Elicitation ——> Analysis ——>| Specification ——>| Validation > Specification
(SRS)
Collecting Understandin Documenting the Checking that our
the users and modeling fae behavior of the specification
requirements desired behavior proposed software matches the
system users’

requirements

UWaterloo CS445/ECE451/CS645 Winter 2024 2

1. Validation vs. Verification

Spec, Domain F Req

Validation:
‘ Are we building the
right product? /"
. Requirements
Design = Spec Specification
Code F Design
TestCases F Spec

Verification:

Are we building the \o
product right?

UWaterloo CS445/ECE451/CS645 Winter 2024

Requirements Engineering Reference Model

Sensors, actuators _
Electronic

Health
Records

Doctors
Patients
Medical record

FETETERE
Env » assumptions.>z
AT A”]nte!rf"ce

pe.clflcatlon
‘\ requirements ;

Web forms
Accounts

* Arequirement is a condition or capability that must be achieved
* A specification is a description of the proposed system / solution
* A domain assumption records how the world (ought to) behave

Validation
Req are correct, complete
Domain are correct, complete

UWaterloo CS445/ECE451/CS645 Winter 2024 4

Requirements Engineering and Testing

Spec, Domain F Req

User requirements; - N\=====ecmcmemmamma o e meccn e memnees Acceptance testing
acceptance test planning

Functional requirements; - N\e=====mccccmcccc e ccececeeem System testing
system test planning

Architecture; integration - N\gssssscccacoac----o Integration testing

test planning

Design F Spec
Code F Design : .
Design; unit

TestCases = Spec test planning

Unit testing

Time Coding

UWaterloo CS445/ECE451/CS645 Winter 2024

Requirements Validation

Requirements validation activities attempt to ensure that:

* The software requirements accurately describe the intended system
capabilities and properties that will satisfy the various stakeholders’
needs.

* The software requirements are correctly derived from the business
requirements, system requirements, business rules, and other sources.

* The requirements are complete, feasible, and verifiable.

* All requirements are necessary, and the entire set is sufficient to meet
the business objectives.

* All requirements representations are consistent with each other.

* The requirements provide an adequate basis to proceed with design
and construction.

UWaterloo CS445/ECE451/CS645 Winter 2024 6

Cost of Fix Errors

1000

1 1 1 ||] 4
0= | a 1 IBM-SSD 7
GTE
wol- | 00 .
80% ¢
100~ { MEDIAN--TRW SURVEY -
, 20%
Relative |- .
cost to O30 sarecuarD
fix error
20+ -
10~ —
S —
2F -
1
- _ Develop-| Accept-)
g‘;‘,’,‘t’g ®| Design | Code |ment = |ance | OPera
Test |Test | ton

Phase in which error detected

UWaterloo CS445/ECE451/CS645 Winter 2024

2. Reviewing Requirements

* Reviewing requirements is a powerful technique for
identifying ambiguous or unverifiable requirements,
requirements that are not defined clearly enough for the
design to begin, and other problems.

* Different kinds of peer reviews:

* A peer desk check, in which you ask one colleague to look over
your work product.

* A pass around, in which you invite several colleagues to examine a
deliverable concurrently.

* A walkthrough, during which the author describes a deliverable
and solicits comments.

2.1 The Inspection Process

* Michael Fa%an developed the inspection process at IBM (Fagan 1976;
Radice 2002).

* Others have extended or modified his method (Gilb and Graham
1993; Wiegers 2002).

* Inspection has been recognized as a software industry best practice
(Brown 1996).

* Any software work product, including requirements, design
documents, source code, test documentation, and project plans, can
be inspected.

* It involves a small team of participants carefully examining a work
product for defects and improvement opportunities.

* Inspections serve as a quality gate through which project deliverables
must pass before they are baselined.

2.1.1 Participants

* The author of the work product and perhaps peers of the author.
« Business analyst who wrote the requirement.
* Another experienced business analyst to check for errors

* People who are the information sources fed into the item being
inspected.

 Actual users, customers, the author of the predecessor specification.

* People who will do work based on the item being inspected.
« A developer, a tester, a project manager, and a user documentation writer.

* People who are responsible for interfacing systems that will be
affected by the item being inspected.

* Will check the external interfaces requirements

2.1.2 Inspection Roles

All participants in an inspection, including the author, look for
defects and improvement opportunities. Some of the
inspection team members perform the following specific roles
during the inspection:

* Author

* Moderator
* Reader

» Recorder

2.1.3 Entry Criteria

* Set clear expectations for authors to follow while preparing for an
inspection.

» Keep the inspection team from spending time on issues that should be
resolved before the inspection.

* The moderator uses the entry criteria as a checklist before inspecting.

« Examples:

« The document conforms to the standard template and does not have obvious spelling,
grammatical, or formatting issues.

 Line numbers or other unique identifiers are printed on the document to facilitate
referring to specific locations.

 All open issues are marked as TBD (to be determined) or accessible in an issue-tracking
tool.

« The moderator did not find more than three significant defects in a ten-minute
examination of a representative sample of the document.

2.1.4 Inspection Stages

Baselined
Work
Product

Initial

Work :
Product > Planning

" l
Inspection :
Meeting Preparation
..-v
Rework »| Follow-Up
A

UWaterloo CS445/ECE451/CS645 Winter 2024

~ O

13

2.1.4 Inspection Stages [
Planning l
 The author and moderator plan the l

inspection together.
* They determine z

* who should participate,
* what materials should the inspectors
receive prior to the inspection meeting,
* the total meeting time needed to cover the
material, and
* when the inspection should be scheduled.

2.1.4 Inspection Stages

Preparation |
* The author should share background l =
information with inspectors so they
understand the context of the items being rework B3l Follow-Up
inspected and know the author’s objectives : -

for the inspection.

* Each inspector then examines the product to identify possible defects

and issues, using the checklist of typical requirements defects described
later.

* Up to 75 percent of the defects found by an inspection are discovered
during preparation, so do not omit this step

2.1.4 Inspection Stages

Inspection meeting |
* The reader leads the other inspectors through l T
the document describes one requirement at
a time in his own words. Rework (| Follow-Up

* As inspectors bring up possible defects and
other issues, the recorder captures them in
the action item list for the author of the requirement.

* The meeting aims to identify as many significant defects as possible.
* The inspection meeting should not last more than two hours; tired people are not

effective inspectors. Schedule additional meetings if you need more time to cover
all the material.

2.1.4 Inspection Stages

Rework

* Nearly every quality control activity reveals l
some defects.

Rework —} Follow-Up

» The author should plan to spend some time
reworking the requirements following the
iInspection meeting.

* Uncorrected requirement defects will be expensive to fix down the road, so
this is the time to resolve the ambiguities, eliminate the fuzziness, and lay
the foundation for a successful development project.

2.1.4 Inspection Stages

Follow-up - l

 The moderator or a designated individual l .
works with the author to ensure that all open
Issues were resolved, and errors were revork =yl ollow-up
corrected properly. B -

* Follow-up brings closure to the inspection process
and enables the moderator to determine whether the inspection’s exit criteria
have been satisfied.

* The follow-up step might reveal that some of the modifications made were
incomplete or not performed correctly, leading to additional rework

2.1.5 Exit Criteria

* The inspection process should define the exit criteria that must be
satisfied before the moderator declares the entire inspection process
(not just the meeting) complete.

* Here are some possible exit criteria for requirements inspections:
 All issues raised during the inspection have been addressed.

« Any changes in the requirements and related work products were made
correctly.

 All open issues have been resolved, or each open issue’s resolution process,
target date, and owner have been documented.

2.2 Defect Checklist

* To help reviewers look for typical errors in the products they review,
develop a defect checklist for each type of requirements document
your projects create.

* Such checklists call the reviewers’ attention to historically frequent
requirement problems.

* Checklists serve as reminders.

* Over time, people will internalize the items and look for the right
issues in each review out of habit.

2.2 Defect Checklist

Completeness

Q Do the requirements address all known customer or system needs?

Q Is any needed information missing? If so, is it identified as TBD?

Q Have algorithms intrinsic to the functional requirements been defined?

Q Are all external hardware, software, and communication interfaces defined?
Q Is the expected behavior documented for all anticipated error conditions?
Q Do the requirements provide an adequate basis for design and test?

Q Is the implementation priority of each requirement included?

Q Is each requirement in scope for the project, release, or iteration?

Correctness

Q Do any requirements conflict with or duplicate other requirements?

Q Is each requirement written in clear, concise, unambiguous, grammatically correct language?
Q Is each requirement verifiable by testing, demonstration, review, or analysis?

Q Are any specified error messages clear and meaningful?

Q Are all requirements actually requirements, not solutions or constraints?

Q Are the requirements technically feasible and implementable within known constraints?

UWaterloo CS445/ECE451/CS645 Winter 2024 21

2.2 Defect Checklist

Quality Attributes

Q Are all usability, performance, security, and safety objectives properly specified?

Q Are other quality attributes documented and quantified, with the acceptable trade-offs specified?
Q Are the time-critical functions identified and timing criteria specified for them?

O Have internationalization and localization issues been adequately addressed?

Q Are all of the quality requirements measurable?

Organization and Traceability

Q Are the requirements organized in a logical and accessible way?

Q Are all cross-references to other requirements and documents correct?

Q Are all requirements written at a consistent and appropriate level of detail?

Q Is each requirement uniquely and correctly labeled?

Q Is each functional requirement traced back to its origin (e.g., system requirement, business rule)?

UWaterloo CS445/ECE451/CS645 Winter 2024 22

2.2 Defect Checklist

Other Issues

Q Are any use cases or process flows missing?
Q Are any alternative flows, exceptions, or other information missing from use cases?

Q Are all of the business rules identified?
Q Are there any missing visual models that would provide clarity or completeness?

Q Are all necessary report specifications present and complete?

UWaterloo CS445/ECE451/CS645 Winter 2024 23

2.3 Requirements Review Tips

* Plan the examination by inviting certain reviewers to focus on
specific sections of documents.

« Start early, when there are perhaps only 10 percent complete, not
when you think they are “done”.

* Allocate sufficient time to perform the reviews in terms of actual
hours to review (effort) and calendar time.

* Provide context for the document and the project if they are all
working on different projects.

2.3 Requirements Review Tips

 Set the review scope by telling the reviewers what material to
examine, where to focus their attention, and what issues to look for.

* Limit re-reviewing the same material more than three times. If you
need someone to review it multiple times, highlight the changes so
he can focus on them.

* Prioritize review areas of high risk or functionality that will be used
frequently. Also, look for areas of the requirements with few issues
logged already.

2.4 Requirements Review Challenges

 Large requirements documents
 Large inspection teams

» Geographically separated reviewers
* Unprepared reviewers

UWaterloo CS445/ECE451/CS645 Winter 2024

26

3. Prototyping Requirements

* Prototypes are validation tools that make the requirements real.

* All prototypes allow you to find missing requirements before more expensive
activities like development and testing occur.

* Something as simple as a paper mock-up can be used to walk through use
cases, processes, or functions to detect omitted or erroneous requirements.

* Prototypes also help confirm that stakeholders have a shared understanding of
the requirements.

* Proof-of-concept prototypes can demonstrate that the requirements are
feasible.

 Evolutionary prototypes allow the users to see how the requirements would
work when implemented to validate that the result is what they expect.

 Additional levels of sophistication in prototypes, such as simulations, allow
more precise validation of the requirements. However, building more
sophisticated prototypes will also take more time.

4. Testing The Requirements

* The simple act of designing tests will reveal many problems with the
requirements long before you can execute those tests on running
software.

* Writing functional tests crystallizes your vision of how the system
should behave under certain conditions.

* Vague and ambiguous requirements will jump out at you because you
will not be able to describe the expected system response.

« Watch out for testers who claim they cannot begin their work until
the requirements are done and testers who claim they do not need
requirements to test the software. Testing and requirements have a
synergistic relationship; they represent complementary views of the
system.

4. Testing The Requirements

User
Requirements
v ~
analyst tester
Functional compare Test Cases and

Requirements and |«

: Scenarios
Analysis Models

l l

Technical and Ul < compare > Test Procedures
Designs and Scripts

UWaterloo CS445/ECE451/CS645 Winter 2024

5. Validating Requirements With Acceptance Criteria

» Customers need to assess whether a system satisfies its predefined
acceptance criteria.

* Acceptance criteria, and hence acceptance testing, should evaluate
whether the product satisfies its documented requirements and
whether it is fit for use in the intended operating environment

5.1 Acceptance Criteria

* Working with customers to develop acceptance criteria provides a
way to validate both the requirements and the solution.

* Thinking about acceptance criteria offers a shift in perspective from
the elicitation question of “What do you need to do with the
system?” to “How would you judge whether the solution meets your
needs?”

* Encourage users to use the SMART mnemonic (Specific, Measurable,
Attainable, Relevant, and Time-sensitive) when defining acceptance
criteria.

5.1 Acceptance Criteria

* Defining acceptance criteria is more than just saying that all the
requirements are implemented or all the tests passed.

* Specific high-priority functionality must be present and operating
correctly before the product can be accepted and used.

 Essential nonfunctional criteria or quality metrics that must be
satisfied.

* Remaining open issues and defects.

* Specific legal, regulatory, or contractual conditions. (These must be
fully satisfied before the product is considered acceptable.)

 Supporting transition, infrastructure, or other project (not product)
requirements. (Perhaps training materials must be available and data
conversions completed before the solution can be released.)

5.2 Acceptance Tests

» Acceptance tests constitute the most significant portion of the acceptance
criteria.

 Creators of acceptance tests should consider the most commonly performed and
essential usage scenarios when deciding how to evaluate the software’s
acceptability.

« Automate the execution of acceptance tests whenever possible. This makes it
easier to repeat the tests when changes are made and functionality is added in
future iterations or releases.

« Acceptance tests must also address nonfunctional requirements.

* They should ensure that performance goals are achieved, that the system complies
with usability standards, and that security expectations are fulfilled.

* Do not expect user acceptance testing to replace comprehensive requirements-
based system testing, which covers all the standard and exception paths and a
wide variety of data combinations, boundary values, and other places where
defects might lurk.

Final Words

* Writing requirements is not enough.

* You need to ensure they are the right requirements and good enough
to serve as a foundation for design, construction, testing, and project
management.

» Acceptance test planning, informal peer reviews, inspections, and
requirements testing techniques will help you build higher-quality
systems faster and more inexpensively than ever.

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Validation and Verification

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Temporal Logic

Background

* We learned about prescriptive specifications that describe
how a system behaves from one point to another.

» System behaviour is decomposed into states, and the

specification is described for each state
« what input the system is ready to react to in that state and
« what the system’s response to the input event will be.

* What if we want to know about longer-term system
behaviour?

Example

 Specification: if a car approaches the intersection, the light in its
direction will eventually be green.

* |If you use what we learned, you must draw several state diagrams
covering each case in which a car approaches the intersection.

* Another approach is to use a notation designed for expressing
system-wide properties such as temporal logic.

Logic

* Propositional logic expresses properties about fixed-valued variables.

* Predicate logic expresses properties about variables that change
value. A logic formula is evaluated concerning a particular
assignment of values to variables.

* In temporal logic, a formula may be evaluated over variables that
change value over time.
1. Set of typed variables
* Booleans, Integers, Sets.

* |If your system is Object-Oriented, you may have variables for
object instantiations, attributes, etc.

Logic

2. Functions on typed variables:
* Integers: +, -, %, /
e Sets: U, N
« Booleans: A, v, -

3. Predicates
* Integers: <, >
« Sets: C, €
4. Equality
* = (comparing two values of the same type)

UWaterloo CS445/ECE451/CS645 Winter 2024

Logic

5. Connectives
* =, A, V, —
« cond1 — cond2 = -cond1 v cond?2
if cond1 then cond2 else cond3 =
(cond1 — cond2) A (-cond1 — cond3)

Logic

6. Quantifiers

eV XxeT: f(x)
For all t €T: the interpretation of f with t substituted for x
evaluates to true.

edxeT: f(x)
There exists t € T: the interpretation of f with t substituted for x
evaluates to true.

» Scope of a quantifier: the extent to which the quantifier applies in
the given formula.

Without brackets, we assume that the scope extends to the right
end of the formula.

Executions

In an executing system, variables change value over time.

 a particular execution of the system is represented by a sequence of states:
0=9S5y, 5,5, ...

O—0 —0—0—

locked locked —[ocked —locked

—COoIn coin —COoINn —COIN

—push —push —push push
numCoins=0 numCoins=1 numCoins=1 numCoins=1
numkEntries=0 numEntries=0 numEntries=0 numEntries=0

UWaterloo CS445/ECE451/CS645 Winter 2024 8

Time-Dependent Logic (Timed logic)

* Many properties describe behaviour over time

* We can think of variables as time functions whose value depends on
time.

UWaterloo CS445/ECE451/CS645 Winter 2024 9

Turnstile Example

coin: time — boolean
locked: time — boolean
push: time — boolean
enter: time — boolean
rotating: time — boolean
numEntries: time — integer
numCoins: time — integer

When writing formulas, every variable used in the formula specifies the time that
the variable’s value is referenced.

numCoins(0) = 0
coin(l) —» —locked(2)

UWaterloo CS445/ECE451/CS645 Winter 2024 10

Turnstile Example

It is hard to write specifications in terms of what the variable values
will be at a particular point in time.

More often, one is interested in expressing the relationships between
variable values.

For example, the barrier will be unlocked when a coin is inserted

Vt € Time : (coin(t) — —locked(t + 1))

Vi, € Time : (coin(t)) — 3It, € Time : (t; < t, A ~locked(t,)))

Turnstile Example

It is always the case that the number of entries into the park is less
than or equal to the number of coins received.

Vit € Time : (numEntries(t) < numCoins(t))

Turnstile Example

If a visitor pushes the turnstile and the turnstile is unlocked, then
eventually the visitor will enter the park.

Vit € Time : ((push(t) A nlocked(t)) — dt, € Time : (t; > t A enter(ty)))

Turnstile Example

If a visitor pushes the turnstile when the turnstile is unlocked, then
the turnstile rotates until the visitor enters the park.

Vt € Time . ((push(t) A ~locked(t)) —
dt, € Time : (t; > t A enter(t)) A
Vi, € Time : (t <1, < t; = rotating(t,))))

Explicit vs. Implicit Time

Notice that we often do not care about the values of variables at

specific points in time. With the possible exception of time ¢ = 0,
when we might care about the initial values of the variables.

Mostly, we care about the temporal ordering of events and variable
values. We want to express constraints on variable values regarding
when they change value.

* |f a coin is inserted, the barrier will become unlocked.
 If a caller picks up the telephone handset, he will hear a dial tone.

 If | push the elevator button, the elevator will eventually arrive at
my floor and open its doors.

Explicit vs. Implicit Time

Sometimes we care about the timing of those events.

 If a train comes within 200 meters of a railroad crossing, the gate
will be lowered within 10 seconds.

But for the most part, we are concerned only with the order in which
events occur.

LTL: Linear Temporal Logic

 Linear Temporal Logic was designed to express the temporal ordering
of events and variable values while leaving time implicit.

* In temporal logic, time progresses, but the exact time is abstracted
away. Instead, we keep track of changes to variable values and the
order in which they occur.

LTL: System State

* The system state is an assignment of values to the model’s variables.

* Intuitively, the system state is a snapshot of the system’s execution.
n this snapshot, every variable has some value.

* |If we are working with an OO or UML system, then looking at a
snapshot of the system, there is an explicit number of instantiated
objects executing, each object is in exactly one state of its state
diagram, and each of its attributes has some value.

* This is one system state. If the system then executes an assignment
statement, the value of one of its variables changes. The system
enters a new system state.

LTL: System State

* There is some initial state of the system, defined by the initial values
of all the variables.

* As the system executes, the values of the variables change. Each
state represents a change from the previous state in the value of
some variable. More than one variable can change the value between
two consecutive states.

LTL: Executions

* A sequence of system states represents a particular execution of the
system. Time progresses during the execution, but there is no
keeping track of how long the system is in any specific state.

* An execution or a computation is a sequence of system states

O = SO’SI’SZ""

LTL: Semantics

n linear temporal logic (LTL), formulas are evaluated concerning a
particular execution and a particular state in that execution.

-ormulas evaluated concerning a state in an execution.

LTL: Ordered Time

Time is totally ordered.

Vx,ye Time : (x<y)Vix=y)V(y<x))

X)
OR
X
®
-.‘ '
OR
¥y X
@ @

UWaterloo CS445/ECE451/CS645 Winter 2024

22

LTL: Boundedness

Time is usually bounded in the past and unbounded in the future.

dx € Time : (~dz € Time : (2 < X))
Vy € Time : (dz € Time : (y < 7))

UWaterloo CS445/ECE451/CS645 Winter 2024

23

LTL: Density

Time is continuous.

Vx,yeETime: (x<y—dz&€Time: (x<z<Yy))

UWaterloo CS445/ECE451/CS645 Winter 2024

24

Temporal Connectives

« Connectives are shorthand notations that quantify over future system
states.

* henceforth:

« eventually: <>

e next: O
e until; %
e unless: #'

Henceforth

f= {T if fis true in the current and all future states

F otherwise

AN

UWaterloo CS445/ECE451/CS645 Winter 2024

26

Example

It is always the case that the number of entries into the park is less
than or equal to the number of coins received.

Hentries <= #coins

F [l (#entries < #coins) A _
%
S T

Shorthand for
Vt € Time : (#entries(t) < #coins(t)), which is a shorthand for
Vi€ Time : (t > 1y — (#entries(t) < #coins(t)))

Eventually

<>f B { T if fis true in the current or some future state

F otherwise

e

OR

UWaterloo CS445/ECE451/CS645 Winter 2024

Note

F [({f) means that f happens infinitely often.

S T

= (}(f) means that, eventually, f is true forever.

f
A
. d
So T
OR f
A
. [

UWaterloo CS445/ECE451/CS645 Winter 2024

29

Next

Of=

T if fis true in the next future state

F otherwise

UWaterloo CS445/ECE451/CS645 Winter 2024

30

Example

The turnstile is unlocked whenever a coin is inserted in the next state.

F [(coin - () ~locked)

coin -= ~locked

UWaterloo CS445/ECE451/CS645 Winter 2024 31

Until

f%g={

T if g is eventually true and fis true until g is true

F otherwise

>0

UWaterloo CS445/ECE451/CS645 Winter 2024

32

Example

Henceforth, if the barrier is pushed, then in the next state, the barrier
will be rotating until the visitor has entered.

F O (push — () (rotating U enter))

enter
rotating

o ®
»

Unless

Unless is similar to Until, but without the guarantee that g happens.
Unless is also called “weak until”.

T if fis indefinitely true or f holds until g is true
fWg= ,
I’ otherwise foos
) y A — o
S T)
OR f
fWg if Lforfg (! :

So T

UWaterloo CS445/ECE451/CS645 Winter 2024 34

Note

 Until is often used to describe some (temporarily) constant system
property.

 Unless is used to describe some (temporarily) constant environmental
property.

Example

Henceforth, if the turnstile is locked, it will stay locked unless a coin
is entered.

F []1(locked — (locked W coin))

/ -
CcoIin
locked -= locked
A\
v
[
S T
OR locked -= locked
A >
d
[
S T

UWaterloo CS445/ECE451/CS645 Winter 2024 36

LTL and Finite State Machines

 LTL can be used to describe properties of a finite state machine.

UWaterloo CS445/ECE451/CS645 Winter 2024

37

LTL and Finite State Machines

coin

(locked — (locked W coin))
((locked A coin) — () (unlocked))
(unlocked — (unlocked % push))
((unlocked A push) — () (rotating))

enter

(rotating — (rotating % enter))

((rotating A enter) — ()(locked))

Note: unlocked # —locked and —locked = rotating vV unlocked

UWaterloo CS445/ECE451/CS645 Winter 2024

push

38

LTL and Finite State Machines

(X = (X W (aV b)))
(X Aa) = (OA))
(XAD) = OB))

Exercise 1: Telephone System

e Variables:

« Users u, u; and u,.
 Predicates:

« onhook(user) user's phone is on hook
 offhook(user) user's phone is off hook

» dialing(user) user is dialing a number

« dial(user1, user2) user1 has dialed user2 (user1 = user2)
 busytone(user) user hears a busy tone

« idletone(user) user hears an idle tone

* ringtone(user) user hears a ringtone

» dialtone(user) user hears a dial tone

« connection(user1, user2) there is a connection between the phones of users 1 and
2 (user1 = user2)

UWaterloo CS445/ECE451/CS645 Winter 2024 40

Exercise 1: Telephone System

1) It is always the case that the user’s phone is either on hook or off
hook.

For any given user u:

E [] (onhook(u) V offhook(ut))

UWaterloo CS445/ECE451/CS645 Winter 2024 41

Exercise 1: Telephone System

2) A user always needs to pick up the phone before dialing.

For any given user u:

E [](—dialing(u) 7 offhook(u))

UWaterloo CS445/ECE451/CS645 Winter 2024

42

Exercise 1: Telephone System

3) After picking up the phone, the user eventually either puts the
telephone back on the hook or dials.

For any given user u:

E [(offhook(u) — {)(dialing(u) V onhook(u)))

Exercise 1: Telephone System

4) Whenever a user dials a number and hears the ring tone, a
connection will only result after the other user picks up the phone.

For any given users 1y and u,:

E [((dial(x,u,) A ringtone(u;)) — (—connection(u,,u,) # offhook(u,)))

Exercise 1: Telephone System

5) Immediately after the callee hangs up on a connection, the caller
will hear an idle tone. After a time-out, the caller will hear a dial
tone.

For any given users 1y and u,:

E [] ((connection(uy,u,) A onhook(u,)) — (O idletone(u;) A <> dialtone(u,)))

Exercise 1: Telephone System

6) Without exception, users will stay connected as long as nobody
hangs up.

For any given users 1y and u,:

E [](connection(u,u,) — (connection(u,u,) % (onhook(u;) V onhook(u,))))

UWaterloo CS445/ECE451/CS645 Winter 2024 46

Exercise 2: Trains Crossing

Events:
a = “A train is approaching”
c = “A train is crossing”
| = “The lights are blinking”
b = “The barrier is down"

47

Exercise 2: Trains Crossing

1) When a train is crossing, the barrier must be down.

F[](c = b)

This is a safety property.

Safety properties are usually of the form —1bad
Another solution is

FE[]-(c A—b)

Exercise 2: Trains Crossing

2) If a train is approaching or crossing, the lights must be blinking.

F[lavcec—l

This is a safety property.

Safety properties are usually of the form —1bad
Another solution is

FL]-((aVc)A-l)

Exercise 2: Trains Crossing

3) If the barrier is up and the lights are off, then no train is coming or
crossing.

F[1(=bA-l— —aA-c)

This is a safety property.

Safety properties are usually of the form —1bad
Another solution is

F[] ("bAIA(@V)

Exercise 2: Trains Crossing

4) When a train is approaching, the train will eventually cross.

F (@ — Oc)

This is a liveness property.

Liveness properties are usually of the form
(initiated — {Hterminates)

Exercise 2: Trains Crossing

5) When a train is approaching, the barrier will eventually be down
before it crosses.

Fd(a A—c - Qe Wb)

This is a liveness property.

Liveness properties are usually of the form
(initiated — {Hterminates)

Exercise 2: Trains Crossing

6) If a train finishes crossing, the barrier will be eventually risen.

F(e A —e - OO Db)

This is a safety property.

Safety properties are usually of the form —bad
Another solution is

F[]-(c A—b)

Note

« Something happens infinitely often = (} a

« Example: The barrier is risen infinitely often = <> —barrier

« The dual is a latching condition = (} 0

« Example: At a given point, no more trains are approaching =
() []~approach

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Temporal Logic

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Risk Analysis

Risk

A risk is an uncertain factor whose occurrence may result in some loss
of satisfaction with some corresponding objective. The risk is said to
negatively impact this objective.

[van Lamsveerde, section 3.4]
* Has a likelihood to occur

* Has consequences

* Product-related risks: may result in the product’s inability to deliver the

required services or the required quality of services, including safety hazards and
security threats.

* Process-related risks: may result in delayed product delivery, cost overruns,
deterioration of project team morale, etc.

UWaterloo CS445/ECE451/CS645 Winter 2024 2

Risk
* If risks go unrecognized or underestimated, the requirements will be

incomplete or inadequate as they will not consider such risks.

Goal: Early risk management at requirements time.

UWaterloo CS445/ECE451/CS645 Winter 2024 3

Risk Classification

» Software Requirement Risks
 Software Cost Risks
 Software Scheduling Risks

« Software Quality Risks

UWaterloo CS445/ECE451/CS645 Winter 2024

Software Requirement Risks

1. Lack of analysis for change of requirements.
2. Change the extension of requirements

3. Lack of report for requirements

4. Poor definition of requirements

5. Ambiguity of requirements

6. Change of requirements

/. Inadequate requirements

8. Impossible requirements

9. Invalid requirements

Software Cost Risks

. Lack of good estimation in projects
. Unrealistic schedule

. The hardware does not work well

. Human errors

. Lack of testing

. Lack of monitoring

. Complexity of architecture

. Large size of architecture

9. Extension of requirements change
10.The tools do not work well

11.Personnel change, Management change, technology change, and environment
change

12.Lack of reassessment of the management cycle

O N O U1 AN W IN =

Software Scheduling Risks

1. Inadequate budget

2. Change of requirements and extension of requirements
3. Human errors

. Inadequate knowledge of tools and techniques

. Long-term training for personnel

. Lack of employment of manager experience

. Lack of enough skill

. Lack of good estimation in projects

co N O Ul N

Software Quality Risks

. Inadequate documentation

. Lack of project standard

. Lack of desigh documentation

. Inadequate budget

. Human errors

. Unrealistic schedule

. Extension of requirements change

. Poor definition of requirements

9. Lack of enough skill

10.Lack of testing and good estimation in projects

11.Inadequate knowledge of techniques, programming language, tools, and so
on

O N O U1 AN WIN =

Risk Management

Risk Management attempts to manage the degree to which a project is
exposed to risks of quality, delay, or failure.

Some tasks are to

* identify risks

» estimate the likelihood of occurrence of risks
* predict the impact of risks on the project

UWaterloo CS445/ECE451/CS645 Winter 2024 9

Risk Management
Risk Risk Risk
/I\< |dent|f|cat|o>%<assessment) (Control >

what syéTem—specific < likely? countermeasures as
risks? severe, likely consequences? Nhew requirements

 Risk management is iterative
e countermeasures may introduce new risks

 Poor risk management is a major cause of software failure
 natural inclination to conceive over-ideal systems (nothing can go wrong)
« unrecognized, underestimated risks lead to incomplete, inadequate
requirements

UWaterloo CS445/ECE451/CS645 Winter 2024 10

Risk Identification: Risk Checklists

* Instantiation of risk categories to project specifics
« associated with corresponding requirements categories (cf. Chap. 1)

* Product-related risks: requirement unsatisfaction in functional or
quality requirement categories

 information inaccuracy, unavailability, unusability, poor response time,
poor peak throughput, etc.
e.g. inaccurate estimates of train speed and positions?

* Process-related risks: top 10 risks [Boehm, 1989]

* requirement volatility, personnel shortfalls, dependencies on external
sources, unrealistic schedules/budgets, etc.

 poor risk management
e.g. Unexperienced developer team for train system?

UWaterloo CS445/ECE451/CS645 Winter 2024 11

Risk Identification: Component Inspection

 For product-related risks

* Review each component of the system-to-be: human, device,
software components
* can it fail?
* how?
* why?
« what are the possible consequences?

e.g. onboard train controller, station computer, tracking system,
and communication infrastructure, ...

 Finer-grained components lead to more accurate analysis

e.g. acceleration controller, doors controller, track sensors, ...

UWaterloo CS445/ECE451/CS645 Winter 2024

12

Risk ldentification: Risk Trees

 Tree organization for causal linking of failures, causes, consequences

 Failure nodes: independent failure event or condition
« decomposable into finer-grained nodes

 Logical nodes: AND/OR, causal links through logical nodes

« AND-node: child nodes must all occur for the parent node to occur as a
consequence
* OR-node: only one child node needs to occur

Risk Tree: Example

Door opens while train moving

AND

Train is movin

n\”'""decomposable hode

leaf node

Software controller fails

Door actuator
fails

peedomete
fails

Wrong

Wrong

Wrong

requirement assumption specification

Wrong
implementation

UWaterloo CS445/ECE451/CS645 Winter 2024

Passenger forces
doors to open

14

Building Risk Trees: Heuristic Identification of Failure Nodes

* Checklists, component inspection identify failure nodes
» Guidewords: keyword-based patterns of failure

* NO: “something is missing”

 MORE: “there are more things than expected”

« LESS: “there are fewer things than expected”

« BEFORE: “something occurs earlier than expected”

« AFTER: “something occurs later than expected”

* But problems frequently happen due to combinations of basic failure
events / conditions.

Analyzing Failure Combinations: Cut Set of a Risk Tree

e Cut set of risk tree RT: set of minimal AND-combinations of RT’s leaf
nodes sufficient for causing RT’s root node

e Cut-set tree of RT: set of its leaf nodes = RT’s cut set

* Derivation of cut-set tree CST of RT:
« CST’s top node := RT’s top logical node
* |If current CST node is OR-node:
expand it with RT’s corresponding alternative child nodes
* |If current CST node is AND-node:
expand it in single aggregation of RT’s conjoined child nodes
« Termination when CST’s child nodes are all aggregations of leaf nodes from RT

Cut Set of a Risk Tree: Derivation

Door opens while train moving |

M'Z""“decomposable hode @

Software controller fails

Door actuator
fails

leaf node
peedometé
fails

Passenger forces
doors to open

Wrong

requirement assumption | [specification

Wrong

Wrong

implc\e/\rlrzggtgation m (m m m,

UWaterloo CS445/ECE451/CS645 Winter 2024

17

Risk ldentification: Using Elicitation Techniques

 Scenarios to point out failures from WHAT IF questions
* interactions not occurring
* interactions occurring too late
* unexpected interactions (e.g. under wrong conditions)
* Knowledge reuse: typical risks from similar systems
» Group sessions: focused on the identification of project-specific risks

Risk Assessment

Risk Rlsk Risk
|dent|f|cat|on assessment control

\'%

\?

» Goal: assess likelihood of risks + severity, likelihood of consequences,
to control high-priority risks

 Qualitative assessment: use qualitative estimates (levels)
* for likelihood: {very likely, likely, possible, unlikely, ...}
* for severity: {catastrophic, severe, high, moderate, ...}

* Risk likelihood-consequence table for each risk

 Risk comparison/prioritization on severity levels

Qualitative Risk Assessment Table: Example
Risk: “Doors open while train moving:

Risk likelihood

Consequences Likely Possible Unlikely
Loss of life Catastrophic ::,..:"";C'atastr'ophig Severe
Serious injuries Catastrophic Severe High
Train car damaged High Moderate Low
#passengers decreased High High Low
Bad airport reputation Moder'ate_l_,.--"f: Low Low
likelihood level seve;'ify level

UWaterloo CS445/ECE451/CS645 Winter 2024 20

Risk Control
;{ Risk >9< Risk }
i\ identification assessment control

» Goal: Reduce high-exposure risks through
countermeasures

* yields new or adapted requirements

: Risk control
* should be cost-effective —— N
countermeasures countermeasures,
select preferre

Exploring Countermeasures

* Using elicitation techniques
* interviews, group sessions

* Reusing known countermeasures

e.g. generic countermeasures to top 10 risks [Boehm, 1989]
 simulation < poor performance

 prototyping, task analysis >< poor usability
 use of cost models >< unrealistic budgets/schedules

* Using risk reduction tactics

Risk Reduction Tactics

* Reduce risk likelihood: new requirements to ensure significant decrease

e.g. “Prompts for driver reaction regularly generated by software”

 Avoid risk: new requirements to ensure risk may never occur
e.g. “Doors may be opened by software-controlled actuators only”
* Reduce consequence likelihood: new requirements to ensure significant
decrease of consequence likelihood

e.g. “Alarm generated in case of door opening while train moving”

 Avoid risk consequence: new requirements to ensure consequence may
never occur
e.g. “No collision in case of inaccurate speed/position estimates”
 Mitigate risk consequence: new requirements to reduce severity of
consequence(s)

e.g. “Waiting passengers informed of train delays”

UWaterloo CS445/ECE451/CS645 Winter 2024 23

Selecting Preferred Countermeasures

 Evaluation criteria for preferred countermeasure:
 contribution to critical non-functional requirements

e contribution to the resolution of other risks
» cost-effectiveness

» Cost-effectiveness is measured by risk-reduction leverage (RRL):
RRL (r,cm) = (Exp(r) - Exp(r|cm)) / Cost (cm)

Exp (r): exposure of risk r
Exp (ricm): new exposure of r if countermeasure cm is selected

» Select countermeasures with the highest RRLs

« Refinable through cumulative countermeasures and RRLs.

Risks Should Be Documented

* To record/explain why these countermeasure requirements, to
support system evolution

* For each identified risk:

» conditions/events for the occurrence

estimated likelihood

possible causes and consequences

estimated likelihood and severity of each consequence

identified countermeasures + risk-reduction leverages

selected countermeasures

Defect Detection and Prevention (DDP)

DDP is a software tool developed by NASA
DDP Steps:

1. ldentify the most critical requirements

2. ldentify potential risks

3. Estimate the impact of each risk on each requirement
4. |dentify possible countermeasures

5. Ildentify the most effective countermeasures

Result of DDP: Optimized collection of mitigating actions that
may be applied to project

Example: Meeting Scheduler

* A meeting initiator informs potential participants about the need for
a meeting and specifies a date range within which the meeting
should take place, asking them to return their scheduling constraints

 Constraints are expressed as two sets:
« one exclusion set (dates when a participant cannot attend)
« one preference set (dates when a participant prefers to attend)

* |Initiator also asks for specific requirements of meeting room

Example: Meeting Scheduler

* All correspondence with participants is via email

* The meeting should be scheduled within the stated date range and
not be in any exclusion sets. The date should also belong to as many
preference sets as possible, especially of the “important”
participants.

* A new schedule cycle is required in case of a date or room conflict.

 Conflicts can be resolved in several ways: the initiator may extend
the date range, some participants may remove dates from their
exclusion set, or some may decline the invitation to attend the
meeting.

Defect Detection and Prevention (DDP)
DDP Steps:

1. ldentify the most critical requirements and their relative
importance

2. ldentify potential risks, and their likelihood

3. Estimate the impact of each risk on each requirement
4. ldentify possible countermeasures

5. Identify the most effective countermeasures

Goal:

 To develop a set of prioritized risks to be addressed
* Perhaps to identify which requirements are the most “risk-driving

b}

UWaterloo CS445/ECE451/CS645 Winter 2024 29

DDP Process

* Risk Consequence Table
e Risk Countermeasure Table

Elaborate Elaborate Determine
@~ risk Impact countermeasure optimal balance
N . at£< Effectiveness risk reduction /

matrix ountermeasure COS

A

UWaterloo CS445/ECE451/CS645 Winter 2024

Risk Consequence Table

Risks
Requirements Weight | Participant does | Participant does | Room with System response | Important
not read e-mails | not reply to equipment is |is too close to participant has
requests not available | meeting last minute change
Likelihood 0.4 0.3 0.1 0.3 0.5
Reduce time taken 0.5
to schedule meetings .
Notify participants
when time and place | 0.4
are found
Increase participant 0.3
average attendance :
Reduce schedule 0.6

conflicts

UWaterloo CS445/ECE451/CS645 Winter 2024

31

Risk Impact Matrix

Risks
Requirements Weight | Participant does | Participant does | Room with System response | Important
not read e-mails | not reply to equipment is |is too close to participant has
requests not available | meeting last minute change
Likelihood 0.4 0.1 0.3 0.5
Reduce time taken
to schedule meetings 0.5 0.6 8 0.2 0.7 0.2
Notify participants
when time and place 0 1 0.2
are found
Increase participant
average attendance 0 0.8 0.5
Reduce schedule
conflicts 0.6 0.2 1 0 0 0.7

Impact(risk, req) = estimate of loss of requirement

0 = no loss

1 = total loss

UWaterloo CS445/ECE451/CS645 Winter 2024

32

Loss of Objective

Risks
Requirements Weight | Participant does | Participant does | Room with System response | Important Loss of
not read e-mails | not reply to equipment is |is too close to participant has objective
requests not available | meeting last minute change
Likelihood

Reduce time taken
to schedule
meetings

Notify participants
when time and place | 0.4 0 0.8 0 1 0.2 0.256
are found
Increase participant
average attendance 0.3 0.8 0.8 0 0.8 0.5 0.315
Reduce schedule
conflicts 0.6 0.2 1 0 0 0.7 0.438
LossOfObjective(req) = weight(req) X Z impact(risk,req) X likelihood(risk)
risk
UWaterloo C5445/ECE451/CS645 Winter 2024 33

Risk Driving Requirements

Risks
Requirements Weight | Participant does | Participant does | Room with System response | Important Loss of
not read e-mails | not reply to equipment is |is too close to participant has objective
requests not available | meeting last minute change
Likelihood 0.4 0.3 0.1 0.3 0.5
Reduce time taken
to schedule 0.5 0.6 0.8 0.2 0.7 0.2 0.405
meetings
Notify participants
when time and place | 0.4 0 0.8 0 1 0.2 0.256
are found
Increase participant
average attendance 0.3 0.8 0.8 0 0.8 0.5 0.315
Reduce schedule
Risk criticality 0.264 0.468 0.01 0.297 0.375

Risk-driving requirements are the requirements that are most at risk of not being achieved.

UWaterloo CS445/ECE451/CS645 Winter 2024 34

Risk Criticality

Risks
Requirements Weight | Participant does | Participant does | Room with System response | Important Loss of
not read e-mails | not reply to equipment is |is too close to participant has objective
requests not available | meeting last minute change
Likelihood 0.3 0.1 0.3 0.5
Reduce time taken
to schedule 0.8 0.2 0.7 0.2 0.405
meetings
Notify participants
when time and place 0.8 0 1 0.2 0.256
are found
Increase participant
average attendance 0.8 0 0.8 0.5 Lo
Reduce schedule
conflicts 1 0 0 0.7 0.438
Risk criticality 0.468 0.01 0.297 0.375
RiskCriticality(risk) = likelihood(risk) X Z impact(risk,req) X weight(req)
req
UWaterloo C5445/ECE451/CS645 Winter 2024 35

Tall Poles

Risks

Requirements Weight | Participant does § Participant does | Room with System response § Important Loss of

not read e- not reply to equipment is | is too close to participant has objective

mails requests not available | meeting last minute

change
Likelihood 0.4 0.3 0.1 0.3 0.5
Reduce time taken
to schedule meetings 0.5 0.6 0.8 0.2 0.7 0.2 0.405
Notify participants
when time and place | 0.4 0 0.8 0 1 0.2 0.256
are found
Increase participant
average attendance 0.3 0.8 0.8 0 0.8 0.5 0.315
Reduce schedule
conflicts 0.6 0.2 1 0 0 0.7 0.438
Risk criticality 0.264 0.468 0.01 0.297 0.375
Tall Poles are the most critical risks, having the most severe consequences.
UWaterloo CS445/ECE451/CS645 Winter 2024 36

DDP Process

* Risk Consequence Table
e Risk Countermeasure Table

Elaborate Elaborate Determine
@~ risk Impact countermeasure optimal balance
N . at£< Effectiveness risk reduction /

matrix ountermeasure COS

A

UWaterloo CS445/ECE451/CS645 Winter 2024

Defect Detection and Prevention (DDP)

DDP Steps:

1. ldentify the most critical requirements
2. ldentify potential risks, and their likelihood
3. Estimate the impact of each risk on each requirement

4. |dentify possible countermeasures, and their effectiveness in
reducing risk

5. Identify the most effective countermeasures

Goal:
* |dentify options for preventing or detecting risks

* Preventative measures, Analyses, Process controls, Tests, Mitigations

* Perhaps to identify the most effective countermeasures

UWaterloo CS445/ECE451/CS645 Winter 2024 38

ldentify Possible Countermeasures

1. Using elicitation techniques: such as interviews, group sessions,
etc.

2. Reusing available countermeasures: Boenm(1989) listed the top ten
risks with alternative countermeasures for each.

Boehm'’s Top 10 Risks

Risk Item Risk Management Technique

Personnel shortfall Staffing with top talent, job matching, team building, key personnel
agreements, cross training

Unrealistic schedules and budgets Detailed milestone cost and schedule estimation, design to cost,
incremental development, software reuse, requirements scrubbing

Developing the wrong functions and Organizational analysis, mission analysis, operations-concept formulation,

properties user surveys and user participation, prototyping, early user's manuals

Developing the wrong user interface Prototyping, scenarios, task analysis, user participation

Gold-plating (e.g. implementing "neat Requirements scrubbing, prototyping, cost-benefit analysis, designing to

features” not asked for by consumer) cost

Continuing stream of requirements High change threshold information hiding, incremental development

changes (deferring changes to later increments)

Shortfalls in externally-furnished Benchmarking, inspections, reference checking, compatibility analysis

components (e.g. component reuse)

Shortfalls in externally performed tasks | Reference checking, pre-award audits, award-fee contracts, competitive
(e.g. worked performed by a contractor) | design or prototyping, team building

Real-time performance shortfalls Simulation, benchmarking, modeling, prototyping, instrumentation, tuning

Straining computer science capabilities | Technical analysis, cost-benefit analysis, prototyping, reference checking

ldentify Possible Countermeasures

. Using risk-reduction tactics

* Reduce risk likelihood

* to reduce the risk of the train’s driver falling asleep or being distracted
from controlling the acceleration process requires a prompt reaction to
being generated by the software.

e Avoid risk

* to avoid the risk of passengers forcing doors to open:
» require that the door actuator reacts to the software controller exclusively, and

 the software checks the train’s speed before responding to any opening request from
passengers.

* Reduce consequence likelihood

* the likelihood of severe injuries or loss of life in case of unexpected door
opening might be reduced by requiring the software to generate an alarm
in case doors open while the train is moving.

ldentify Possible Countermeasures

3. Using risk-reduction tactics

* Avoid risk consequences

* introduce requirements that ensure that train collisions cannot occur in
case the risk of inaccurate train position or speed information occurs.

 Mitigate risk consequences

* introduce requirements that reduce the severity of consequences of this
tolerated risk. For example, request videoconferencing etc., in case of a
last-minute absence of a participant in a meeting.

Risk Countermeasure Table

Risks
Countermeasures Participant does | Participant does | Room with System response | Important
not read e-mails | not reply to equipment is |is too close to participant has
requests not available | meeting last minute change
Criticality 0.264 0.468 0.01 0.297 0.375

Send e-mail reminder

Change the meeting, increase
time range

Allow system to have access
to personal e-agendas

Change the meeting, fewer
constraints (equipment)

Cancel a meeting and send e-
mail confirmation

UWaterloo CS445/ECE451/CS645 Winter 2024

Countermeasure Effectiveness Matrix

Risks
Countermeasures Participant does | Participant does | Room with System response | Important
not read e-mails | not reply to equipment is |is too close to participant has
requests not available | meeting last minute change
Criticality 0.264 0.468 0.297 0.375
Send e-mail reminder 0.7 0.7 0.1 0
Change the meeting, increase
time range 0.2 0.2 0.1 0
Allow system to have access
to personal e-agendas 0.3 0.2 0.2 0.3
Change the meeting, fewer
constraints (equipment) 4_9_9_ 0 0
Cancel a meeting and send e- 0.8 0.8 0.7 0.9

mail confirmation

Effect(cm, risk) = estimate of reduction of risk

0=
1 -_—

no reduction
risk eliminated

UWaterloo CS445/ECE451/CS645 Winter 2024

Combined Risk Reduction

Risks
Countermeasures Participant does | Participant does | Room with System response | Important
not read e-mails | not reply to equipment is |is too close to participant has
requests not available | meeting last minute change
Criticality 0.264 0.468 0.01 0.297 0.375
Send e-mail reminder 0.7 0 0.1 0
Change the meeting,
increase time range 0.2 0 0.1 0
Allow system to have access
to personal e-agendas 0.2 0.1 0.2 0.3
Change the meeting, fewer
constraints (equipment) 0 0.9 0 0
Cancel a meeting and send e-
mail confirmation 0.8 1 0.7 0.9
Combined Risk Reduction 0.962 1 0.806 0.93

CombinedRiskReduction(risk) = 1 — H(l — reduction(cm,risk))

UWaterloo CS445/ECE451/CS645 Winter 2024

45

Effect of Countermeasure

Risks
Countermeasures Participant does | Participant does | Room with System response | Important Effect of
not read e-mails | not reply to equipment is |is too close to participant has Counter
requests not available | meeting last minute change | measure
Criticality

Send e-mail reminder

tclrr',f:grintghee meeting, increase 0.2 0.2 0 0.1 0 0.176
félg‘gr:gzgelrg_gzgszj’gsaccess 0.3 0.2 0.1 0.2 0.3 0.346
Chane e meetig fover [: : o | oo
rcnzr]‘lcigﬁfm?t‘ggn and send e- 0.8 0.8 1 0.7 0.9 1.141
Combined Risk Reduction 0.966 0.962 1 0.806 0.93

EffectOfCountermeasure(cm) = Z (reduction(cm,risk) X criticality(risk))

risk

UWaterloo CS445/ECE451/CS645 Winter 2024

46

Most Effective Countermeasure

Risks

Countermeasures Participant does | Participant does | Room with System response | Important Effect of

not read e-mails | not reply to equipment is |is too close to participant has Counter

requests not available | meeting last minute change | measure

Criticality 0.264 0.468 0.01 0.297 0.375
Send e-mail reminder 0.7 0.7 0 0.1 0 0.542
Change the meeting, increase
time range 0.2 0.2 0 0.1 0 0.176
Allow system to have access
to personal e-agendas 0.3 0.2 0.1 0.2 0.3 0.346
Change the meeting, fewer
constraints (equipment) 0 0 0.9 0 0
Cancel a meeting and send e-
mail confirmation 0.8 0.8 1 0.7 0.9
Combined Risk Reduction 0.966 0.962 0.806 0.93

Most effective countermeasure

Least effective countermeasure
UWaterloo CS445/ECE451/CS645 Winter 2024 47

Most reduced risk

DDP Process

* Risk Consequence Table
e Risk Countermeasure Table

Elaborate Elaborate Determine
@~ risk Impact countermeasure optimal balance
N . at£< Effectiveness risk reduction /

matrix ountermeasure COS

A

UWaterloo CS445/ECE451/CS645 Winter 2024

Determine Optimal Balance Risk Reduction vs.
Countermeasure Cost

* Cost of each countermeasure cm to be estimated with
domain experts.

 DDP can then visualize

* risk balance charts: residual impact of each risk on all objectives
if cm is selected

* optimal combinations of countermeasures for risk balance under
cost constraints

 simulated annealing search for near-optimal solutions
e user can set optimality criterion

e.g. “maximize the satisfaction of objectives under this cost threshold.”
“minimize cost above this satisfaction threshold.”

UWaterloo CS445/ECE451/CS645 Winter 2024 49

Risk Documentation

* Recall: risk management is an iterative process (identify,
assess, control)

* The process should be documented:
* to provide the rationale for countermeasure requirements
* to support requirements evolution
* needed for risk monitoring at system runtime

* needed for the dynamic selection of more appropriate
countermeasures

Risk Documentation

* Risk document should include for each identified risk:
* The conditions or events characterizing its occurrence.
* |Its estimated likelihood of occurrence.
* |ts possible cause and consequences.

* The estimated likelihood and severity of each possible
consequence.

* The countermeasures that were identified together with their
respective risk-reduction leverage

 The selected subset of countermeasures.

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Risk Analysis

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Cost Estimation

Fundamental Estimation Questions

 How much effort is required to complete an activity?
 How much calendar time is needed to complete an activity?
* What is the total cost of an activity?

* Project estimation and scheduling and interleaved management
activities

Estimation

Our job is to estimate:
1. Time to develop

2. Cost
3. Number of developers / month

UWaterloo CS445/ECE451/CS645 Winter 2024

Why is it hard to estimate well?

It is not easy to estimate the cost and effort to build a project when
you do not know very much about that project.

* Yes, software engineering is still a relatively new field.
* We are not estimating repeatable, objective phenomena.

* The earlier the estimate (e.g., requirements phase), the less is
known about the project.

 Unlike building bridges, most of the time and effort in software
development is in creating a new design.

* A goal to estimate within 10% of the actual cost is unrealistic.
Experience has shown that the product is almost complete when we
know enough about a project to estimate its cost to be within 10% of
its actual cost.

Why estimate software cost and effort?

 To provide a basis for agreeing to a job.
* To make commitments that you can meet.
* To help you track progress.

UWaterloo CS445/ECE451/CS645 Winter 2024

Estimation Techniques

 Delphi Method
* Function Point Analysis
* CoCoMo

UWaterloo CS445/ECE451/CS645 Winter 2024

Delphi Method

Delphi methods are based on expert judgment:

1. Each expert submits a secret prediction, using whatever process
each one chooses.

2. The average estimate is sent to the whole group.
3. Each expert revises their prediction privately.

4. Repeat until no expert wants to revise their estimate, i.e., until a
fixed point is reached.

Function Point Analysis

 Estimating Cost based on what we know at requirements time
1. Estimate the number of function points from the requirements,
2. Estimate code size from function points, and

3. Estimate resources required (time, personnel, money) from a
code size

{RequirementsHunction PointH Code Size H Resources J

1. Estimate Function Points

|dea: Predict the complexity of the system in terms of the number of functions
to write

The Basic Model is:
FPs = a,El + a,EO + a;EQ + a,EIF + a:ILF

FPs = number of function points

El (External Inputs) = number of user inputs (data entry, input event).
EO (External Outputs) = number of user outputs (screen error messages, report).

EQ (External Inquiries) = number of user queries (request or response function
that doesn't require a change to system state).

EIF (External Interface File) = number of external interfaces (other systems,...).
ILF (Internal Logical Files) = number of internal files.

a,, a,, ..., as - empirically observed weights per function type

UWaterloo CS445/ECE451/CS645 Winter 2024 9

Weights

Complexity
Low Average High
External Input (EI) 3 4 6
External Output (EO) 4 5 7
External Inquiry (EQ) 3 4 6
External Interface File (EIF) 5 7/ 10
Logical Internal File (LIF) 7/ 10 15

2. Estimating Code Size From FPs

* There are tables that list, for each
programming language, the number of
statements in it that are required to
implement one function point.

 These tables must be calibrated for each
shop, each domain, etc.

UWaterloo CS445/ECE451/CS645 Winter 2024

Language SLOC / UFP
Ada 71
Al Shell 49
APL 32
Assembly 320
Assembly (Macro) 213
ANSI / Quick / Turbo Basic 64
Basic - Compiled 91
Basic - Interpreted 128
C 128
C++ 29
ANSI Cobol 85 91
Fortran 77 105
Forth 64
Jovial 105
Lisp 64
Modula 2 80
Pascal 91
Prolog 64
Report Generator 80
Spreadsheet 6

11

Problems with KLOC

* How do you measure them?

* How do you count one line that has several statements?
« How do you count a statement that is over several lines?
* How do you count constructs, e.g., conditionals?

* One person’s line may be another’s several lines

But they are used as the unit of code size with care and with
standards that answer these questions.

3. Estimate Cost

COnstructive COst MOdel (COCOMO) - used to predict the cost of a
project from an estimate of its size (LOC or KLOC):

* is one of the earliest cost models widely used in cost estimation.

 was initially published in Software Engineering Economics by Dr. Barry
Boehm in 1981.

* is a regression-based model considering various historical programs’
software sizes and multipliers.

* its most fundamental calculation is using the Effort Equation to
estimate the number of developers in a month required to develop a
project.

3. Estimate Cost

COnstructive COst MOdel (COCOMO) - used to predict the cost of a project from an
estimate of its size in lines of code (LOC).

E=axKLOChb x X

E is for Effort - estimated in man-months or person-months (the amount of work
performed by the average worker in a month)

KLOC - estimated project size (thousands of lines of code)
a, b - empirically observed weightings; depend on the type of

system being developed Kind of project 3 b
X - project attribute multipliers organic (< 50,000 LOC) 241105

semi-detached (< 300,000 LOC) | 3.0 | 1.12
embedded 3.6 | 1.20

UWaterloo CS445/ECE451/CS645 Winter 2024 14

Project Attributes

Adjust Effort estimation according to attributes of the project:

« Product attributes (reliability, complexity): required reliability,
complexity?, database size |

* Resource constraints (execution time, memory constraints):

execution time!, memory?t, hardware volatility!, tight response
time

« Personnel attributes (experience of developers): quality of analysts|,
quality of programmers|, experience with the product|, hardware
experience|, programming language (PL) experience|

* Project attributes (techniques, programming languages): use of
software tools (e.g., debugger)|, use of modern PL|, schedule
constraints?

Project Attributes

11C L AQIL ment

Product Attributes

Required Software Reliability RELY 0.75 0.88 1.00 1.16 1.40

Database Size DATA 0.94 1.00 1.08 1.16

Product Complexity CPLX 0.70 0.85 1.00 1.15 1.30 1.65
Computer Attributes

Execution Time Constraints TIME 1.00 11 1.30 1.66
Main Storage Constraints STOR 1.00 1.06 1.21 1.56
Virtual Machine Volatility VIRT 0.87 1.00 1.15 1.30

Computer Turnaround Time TURN 0.87 1.00 1.07 1.15

Personnel Attributes

Analyst Capability ACAP 1.46 1.19 1.00 0.86 0.71

Applications Experience AEXP 1.29 1.13 1.00 0.91 0.82

Programmer Capability PCAP 1.42 1.17 1.00 0.86 0.70

Virtual Machine Experience VEXP 1.21 1.10 1.00 0.90

Programming Language Experience |LEXP 1.14 1.07 1.00 0.95

Project Attributes

Use of Modermn Programming Practices |MODP 1.24 1.10 1.00 0.91 0.82

Use of Software Tools ToOL 1.24 1.10 1.00 0.91 0.83

Required Development Schedule SCED 1.23 1.08 1.00 1.04 1.10

UWaterloo CS445/ECE451/CS645 Winter 2024

Other Equations

* Development Time (D): cE4 months.

» People Required (P): E/D people.

Software Project C d

Organic 2.5 0.38
Semi-detached 2.5 0.35
Embedded 2.5 0.32

UWaterloo CS445/ECE451/CS645 Winter 2024

17

Notes

* The FPs are calculated from the requirements and translated into
estimated LOCs, then used in the COCOMO estimation method.

 Technically, the more developers the less time it takes to finish the
project.

* Why is the formula not linear?

Developers

Time

Notes

e But it does not work.
e Main counter-example:
e It does work for painting a fence. Why?
e |t does not work for software development teams. Why?

Communication in a Group Project

« At some point, a new person costs in communication more than they
add to the work that can be done.

* This is not even counting the fact that a new person wastes their own
and others’ time getting up to speed.

- AN @

1,0 2,1 4,6

Team size, Lines of communication

UWaterloo CS445/ECE451/CS645 Winter 2024 20

Communication in a Group Project

The other side of the coin is that any given project needs at
least some minimum number X of people, and if you do not
have that many people, you need to add more, even though it

will cost delays. It is a choice between delay and never
finishing.

Experience, Experience and Experience

* Models have to be calibrated to an organization
Local factors include expertise, process, product type, and definition
of LOC perturb accuracy.

* 100%+ errors are normal
A software cost estimate model is doing well if it can estimate within
20% of the actual costs and within 70% of the actual time, assuming
that the model has been calibrated to this type and size of the
project!

* Model parameters based on old projects/technology
Weights and coefficients are based on empirical studies of past
projects using old technology and may be entirely unlike new
projects.

5o why to bother?

Poor estimates may be better than no estimates:
* We need this information to negotiate the cost of the product.

* We need to plan for the project.
 to determine how many developers to hire or to assign to this project,
 to know how long they’ll be dedicated to this project and not to others

* We cannot control what we cannot measure.

Our estimation ability improves with practice and experience.

Do not get too caught up in an estimate. It is wrong. You will get
better, but you will never master the problem.

UWaterloo CS445/ECE451/CS645 Winter 2024 23

5o why to bother?

* Some people will be better at estimating than others.
Cost estimation is not a science.
It’s an art based on intuition and experience.

Be wary of any method or tool vendor that claims to predict cost or
effort to unrealistic precision, i.e., more than one significant digit!

UWaterloo CS445/ECE451/CS645 Winter 2024 24

Cross-checks and Validation

« After an estimate has been created, the next step involves validating
the estimate by cross-checking.
» Cross-checking means using a different approach to create the estimate.
* |f both estimates are close, the target estimate has some validity.

* |f both estimates are very different.
» This increases the uncertainty level, which must be reflected in a risk analysis.
« This may lead to another estimating method to increase cost estimate confidence.

* |t is a good practice to cross-check significant cost drivers.

« |f time is available, cross-checking other cost elements can further validate
the estimate.

Cross-checks and Validation

* Validation also includes a demonstration that:
* The data relationships are logical,
* The data used are credible/convincing,
* Model users have sufficient experience and training,
 Calibration processes are thoroughly documented,
* Formal estimating policies and procedures are established, and

* When applicable, information system controls are maintained to
ensure the integrity of the used models.

Cost Estimating Challenges

e Access to historical data

* Need to invest in database capture of historical costs and technical data for
proper CER development
» Costly, time-consuming, and usually not funded

* Development costs for IT systems can quickly become outdated by new programming
languages

* Maintenance costs are even more challenging to capture because they are seen as
ongoing support or overhead and not as metrics

» System architecture change effects on cost estimates can be hard to determine

» Validity and uncertainty of data

» Garbage in = Garbage out

Cost Estimating Challenges

 Limited time to develop estimates

« Can result in rough-order magnitude costs being used as budget quality
estimates

« Cause necessary steps like validation and Monte Carlo simulation to be
omitted

* Resources
* Lack of trained people is a problem

Why you underestimate by an order of magnitude

Fred Brook observes:

* Everybody thinks program when they should think of software system
product.

* Program - what you write for yourself (and thus what you know)

» System - a program that interfaces with other programs, directly or
indirectly, costs three times as much as a central program (more stuff
to write)

* Product - a program written for others that must therefore be robust,
costs three times as much as a central program

 Software system product - a program that is system and product costs
nine times as much as a central program

COCOMO - Constructive Cost Model

* COCOMO II - Constructive Cost Model
 http://softwarecost.org/tools/COCOMQ/

* COCOMO IlI - Constructive Cost Model
 https://boehmcsse.org/tools/cocomo-iii/
 https://www.youtube.com/watch?v=5sxKi-QslOU

30

http://softwarecost.org/tools/COCOMO/
https://boehmcsse.org/tools/cocomo-iii/
https://www.youtube.com/watch?v=5sxKi-QsIOU

“The models are just there to help, not to make the
management decisions for you.”

-- Barry Boehm

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Cost Estimation

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Prioritizing Requirements

Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 2010.

Why prioritize requirements?

* When customer expectations are high, and timelines are short.

* When you need to make sure the product delivers the most critical or
valuable functionality as early as possible.

* |t is a way to deal with competing demands for limited resources.

* |t is a critical strategy for agile or other projects that develop
products through a series of fixed-schedule timeboxes.

* On every project, a project manager must balance the desired
project scope against the constraints of schedule, budget, staff, and
quality goals.

* to drop, or to defer to a later release, low-priority requirements
when new, more essential requirements are accepted or when
other project conditions change.

Some Prioritization Pragmatics

Successful prioritization requires an understanding of six issues:
1. The needs of the customers

2. The relative importance of requirements to the customers

3. The timing at which capabilities need to be delivered

4. Requirements that serve as predecessors for other requirements and
other relationships among requirements

5. Which requirements must be implemented as a group
6. The cost to satisfy each requirement

Stakeholders May Resist

To encourage stakeholders to acknowledge that some requirements
have lower priority, the analyst can ask questions such as the following:

* |s there some other way to satisfy the need that this requirement
addresses?

* What would the consequences be of omitting or deferring this
requirement?

* What effect would it have on the project’s business objectives if this
requirement was not implemented for several months?

* Why might customers be unhappy if this requirement was deferred to
a later release?

* |s having this feature worth delaying the release of all of the other
features with this same priority?

Some Prioritization Techniques

e |n or Out
 Three-Level Scale

* MoSCoW
 Cost-Value Approach

UWaterloo CS445/ECE451/CS645 Winter 2024

In or Out

* Simple

* Group of stakeholders

* Binary decision

» Keep referring to the project’s business objectives

Three-Level Scale

 Consider the two dimensions of importance and urgency

Important Not So Important
High Don't Do
Urgent Priority These!
Medium Low
Not So Urgent Priority Priority

UWaterloo CS445/ECE451/CS645 Winter 2024

Prioritize Iteratively

* Sometimes, particularly on a large project, you might want to
perform prioritization iteratively.

UWaterloo CS445/ECE451/CS645 Winter 2024

MoSCoW

The four capitalized letters in the MoSCoW prioritization scheme stand
for four possible priority classifications for the requirements in a set.

* Must: The requirement must be satisfied for the solution to be
considered a success.

* Should: The requirement is essential and should be included in the
solution if possible, but it’s not mandatory for success.

* Could: It’s a desirable capability that could be deferred or
eliminated. Implement it only if time and resources permit.

* Won’t: This indicates a requirement that will not be implemented at
this time but could be included in a future release.

Cost-Value Approach

Want to sort requirements by their potential value and cost?
 Value is a requirement’s potential contribution to customer satisfaction
« Cost is the cost of implementing the requirement

« Can prioritize requirements according
to their cost-value ratios nigh

 absolute values and costs are complex to
estimate -

* relative comparisons are easier

* Based on the Analytic Hierarchy
Process (AHP); an approach for
supporting decision-making. -+

* |t includes five steps. 0 —t—F—1+—

medium

Value($)

low

Cost($)

Step I:

The requirements engineers review the candidate requirements to
ensure that the requirements are complete and clearly defined.

Step ll:

Customers and users determine the relative value of each requirement
using the pairwise comparison method of the AHP, which includes five

steps.

step 1: compare palrs of requ1rements
- requirements are of equal value

- one is slightly preferred over the other

- one is strongly preferred over the other

- one is very strongly preferred over the other

* 9 - one is highly preferred over the other

* Intermediate values 2, 4, 6, and 8 used when
compromise is needed

« if pair (x,y) has relative value n, complementary
pair (y,X) has reciprocal value 1/n

°
\IU'Iw—\

UWaterloo CS445/ECE451/CS645 Winter 2024

Req1 | Reg2 | Req3 | Req4
Req1 1 1/3 2 4
Req2 3 1 5 3
Req3 | 1/2 1/5 1 1/3
Reqgd | 1/4 1/3 3 1

12

Step 1: Compare pairs of requirements

Averaging Over Normalized Columns

Step 3:
Sum each row

Step 4:
Normalize sums

Req1 | Req2 | Req3 | Reqg4
Reql | 1 113 | 2 4 Sum Sum/4
Req2 | 3 1 5 3 1.05 0.26
Reg3 | 172 | 15 | 1 1/3 1.98 0.50
Regd | 174 | 13 | 3 1 0.34 0.09
0.62 0.16
Step 2: Normalize the columns
(i.e., divide each entry by the sum of its column Step 5:

Report relative values

Req1 | Reg2 | Req3 | Reqg4
Req1| 0.21 | 0.18 | 0.18 | 0.48 Req1 | 26%
Reg2 | 0.63 | 0.54 | 0.45 | 0.36 Req2 | 50%
Reg3 | 0.11 | 0.11 | 0.09 | 0.04 Req3 | 9%
Reg4 | 0.05 | 0.18 | 0.27 | 0.12 Reqgd | 16%

UWaterloo CS445/ECE451/CS645 Winter 2024

13

Checking Consistency

The consistency Index is the first indicator of the result accuracy of
the pairwise comparison.

UWaterloo CS445/ECE451/CS645 Winter 2024 14

Checking Consistency

Step 1: Multiply comparison matrix by priority vector

Req1 | Req2 | Req3 | Req4 Priority
Req1 1 1/3 2 “ 0.26 1.22
Req2 3 1 5 3 ° 050 | = | 2.18
Req3 | 1/2 1/5 1 1/3 0.09 0.37
Reqd4 | 1/4 1/3 3 1 0.16 0.64
Step 2: Divide each element by the
corresponding element in priority vector
1.22/0.26 4.66 Step 3: Compute principle eigenvalue
2.18/0.50 440
— 466+440+429+4.13 _, 37
0.37/0.09 4.29 4 -
0.64/0.16 413
Step 5: Compare against consistency
Step 4: Calculate consistency index index of random matrix (<0.10)
c= 2270 512 CR= —2 014
= © 090

UWaterloo CS445/ECE451/CS645 Winter 2024

15

Checking Consistency

Consistency ratio. The consistency indices of randomly generated reciprocal matrices from the scale 1 to 9 are called the ran-
dom indices, RI.! The ratio of CI to RI for the same-order matrix is called the consistency ratio (CR), which defines the accu-
racy of the pairwise comparisons. The RI for matrices of order # are given below. The first row shows the order of the matrix,
and the second the corresponding Rl value.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00 0.00 0.58 090) L.12 124 132 141 145 149 151 148 156 157 1.59

UWaterloo CS445/ECE451/CS645 Winter 2024 16

Step llI:

Perform Step Il of AHP to estimate relative cost

UWaterloo CS445/ECE451/CS645 Winter 2024

17

Step IV:

Create a cost-value diagram

where the value is depicted on y
. . 50 — igh
the y-axis, and the cost is
depicted on the x-axis. 2oL)
] |
S 301+ medium «
8_ X
1
= 20T
©
> X
10 - low
0 1+
0 10 20 30 40 50
Cost(percent)

UWaterloo CS445/ECE451/CS645 Winter 2024 18

Step V:

Stakeholders use the cost-value diagram as a conceptual map for
analyzing and discussing the requirements.

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Prioritizing Requirements

Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 2010.

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Requirements Negotiation and
Conflict Management

Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 2010.

UWaterloo CS445/ECE451/CS645 Winter 2024

Overview

One goal of the requirement engineering process is to establish
sufficient agreement among the stakeholders regarding the already
known requirements for the system.

You achieve this goal by:
* |[dentifying conflicts
« Analyzing conflicts
 Resolving conflicts
* Documenting conflict resolutions

Those activities are mainly supported by the following:
* Win-Win approach
* Interaction matrix

Conflict in Requirements Engineering

* Exists if the needs and wishes of different stakeholders regarding the
system contradict each other or if some needs and desires cannot be
considered.

« Examples:

* Maintenance staff of an email system demand that the incoming and outgoing
emails are recorded in the log file to support the system, while users demand
high confidentiality of the exchanged emails.

* Some stakeholders demand radar sensors for distance measurement, while
others demand ultrasound sensors.

« some stakeholders demand that safety information for drivers be displayed on
a head-up display, while others think it could distract drivers and reject this
requirement.

UWaterloo CS445/ECE451/CS645 Winter 2024 4

Conflict in Requirements Engineering

* Risks: unresolved conflicts may cause
 stakeholders to no longer support the development of the system, or
« a failure of the development of the system

* Conflicts should be treated as a source of
* new ideas
* innovative requirements

* To resolve conflict:
e involve the relevant stakeholders to resolve.

* involve software architects, developers, and testers to be trained to report
(not to resolve) detected conflicts.

« Both jointly should resolve the conflicts.

Use of Goals and Scenarios

* First, identify conflicts at the goal level as far as possible, then
document, analyze, and resolve them at that level as far as possible.

 Conflict analysis benefits from using scenarios: a scenario can clarify
conflict by describing the sequence of interactions in which the
conflict occurs.

* Scenarios can be used to discuss how to reduce the conflict or avoid
it altogether.

e Stakeholders can evaluate different scenarios and choose the ones
that offer the best solution.

Activities of Conflict Management

1. ldentifying conflicts
2. Analyzing conflicts

3. Resolving conflicts
4. Documenting conflict resolutions

UWaterloo CS445/ECE451/CS645 Winter 2024

1. ldentifying Conflicts

 Conflicts about requirements may surface during all requirement
engineering activities, such as:
* during elicitation in workshops

« during documenting the requirements that have been elicited during different
interviews

 during prioritization of requirements (different opinions)

 during requirements validation (some consider requirement correct, and
others object to it).

 during conflict resolution, a new conflict identified

2. Analyzing Conflicts

* Goal: to determine the conflict types
* Resolving the conflict depends on the type

* One suggestion for classifying the conflicts is
« Data conflict
* Interest conflict
* Value conflict

2.1 Data Conflict
Caused by:

* a lack of information
« misinformation
o different interpretations of an issue

Example: The following requirement is defined for a car entertainment
system:

R4: The DVD player shall be able to handle re-writeable CDs (CD-RW)
and DVDs (DVD-RW).

A stakeholder disagrees with the requirement. In his opinion, it does
not make sense for a DVD player in the car to be able to write data
onto CDs or DVDs

UWaterloo CS445/ECE451/CS645 Winter 2024 10

2.2 Interest Conflict

It exists if:
« stakeholders’ interests or goals about the system contradict each other.

Example:

Stakeholder#1: wants the car entertainment system to include Mp3
functionality, an optional hard disk, and a USB interface to attract

technology-oriented customers.

Stakeholder#2: wants the system to be equipped with a CD player and
radio. His goal is to reduce costs to attract price-conscious customers.

UWaterloo CS445/ECE451/CS645 Winter 2024 11

2.3 Value Conflict

It exists if:
 different stakeholders evaluate a requirement differently
» each stakeholder considers the importance of the requirement differently

The evaluation of facts is affected by the following:
« experience in life
 profession

education

training

personal ideals

culture

* religion

and other characteristics.

2. Analyzing Conflicts

The type of conflict can be determined by the following three steps (in
this order):

1. Checking for a data conflict: based on misinterpretations or
incorrect information. Ask stakeholders to write their
interpretation of the requirements to detect a potential conflict.

2. Checking for an interest conflict: based on different goals. Ask
stakeholders to name their goals associated with the conflicting
requirements. Document the goals of each stakeholder separately
in a goal model. Compare the models to detect the conflict.

2. Analyzing Conflicts

3. Checking for a value conflict: based on different values. Check the
stakeholders’ evaluation backgrounds (find out why they evaluate the
requirements the way they do).

UWaterloo CS445/ECE451/CS645 Winter 2024 14

3. Resolving Conflicts

One of the following three basic strategies can be applied:
1. Negotiation

2. Creative Solution

3. Decision

UWaterloo CS445/ECE451/CS645 Winter 2024

15

3.1 Negotiation

« Exchange of arguments
* Agreement upon a solution

* Advantage: the viewpoints of all parties are considered, and a win-
win situation is created. (I will talk about it later)

 Disadvantage: it can be time-consuming, and the compromise may
not be the best solution from an objective viewpoint.

3.2 Creative Solution

* Discard the old solutions
* Develop creative, novel solutions

* Advantage: all parties come off as winners, as solutions are
acceptable to all parties

 Disadvantage: The process can be time-consuming (to develop
creative, novel solutions) and might impact other requirements
influenced by the solutions.

3.3 Decision

« Complete agreement is rarely achievable. Conflict must be resolved
in due time by a decision-maker.

 Decision-maker: higher authority, project leader, client
representative, etc.

« Advantage: can be quick, without consuming too many resources.

 Disadvantage: there are cases where there is no higher authority.
Usually, the decision is made favouring one viewpoint while ignoring
the others.

* (Alt) Voting: on the viewpoints of all involved stakeholders

1.
2.

Negotiation Techniques

Win-Win approach: All stakeholders become winners

Interaction matrix: Visualizing overlapping and conflict about
requirements.

UWaterloo CS445/ECE451/CS645 Winter 2024

19

Win-Win approach

1. Understand how stakeholders want to win: what is considered a
benefit?

2. Raise adequate/realistic expectations by:

1. Joint discussion about stakeholders’ expectations to identify wrong or
unrealistic expectations.

2. putting oneself in the other stakeholders’ place to improve understanding
of their viewpoints.

3. Expectations shall be defined based on objective criteria.

4. Expectations shall be oriented towards experience (e.g. benchmarks,
expert knowledge).

3. Win-win approach is beneficial for negotiation and creative solution
strategies.

4. Resolving a conflict throu%h a decision generally leads to a win-lose
situation since it is typically made in favour of a single viewpoint.

Interaction matrix

« Each cell represents a pair of requirements and describes their
interaction.

* Values of cells:
* 1: if the conflict exists
« 1,000: if the requirements overlap
* 0: if the requirements are independent of each other

* Analysis:
e calculate the sum of each column

« if the sum=0 for a column: the req. represented by this column doesn’t
overlap or conflict with any other requirements

« #overlaps= sum div 1000
« #conflicts= sum module 1000 (remainder of sum/1000)

Example
—_———

UWaterloo CS445/ECE451/CS645 Winter 2024 22

Summary

One goal of the requirement engineering process is to establish
sufficient agreement among the stakeholders regarding the already
known requirements for the system.

You achieve this goal by:
* |[dentifying conflicts
« Analyzing conflicts
 Resolving conflicts
* Documenting conflict resolutions

Those activities are mainly supported by the following:
* Win-Win approach
* Interaction matrix

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Requirements Negotiation and
Conflict Management

Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques. Springer, 2010.

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Quality Requirements

Overview

* There is more to software success than just delivering the
proper functionality.

* Users also have expectations, often unstated, about how well
the product will work.

* how easy it is to use,

* how quickly it executes,

* how rarely it fails,

* how it handles unexpected conditions,

* perhaps, how loud it is.

* Such characteristics, collectively known as quality attributes,
quality factors, quality requirements, quality of service
requirements.

Overview

 Quality attributes can distinguish a product that merely does what it
is supposed to do from one that delights its users.

 Excellent products reflect an optimum balance of competing quality
characteristics.

* |If you do not explore the customers’ quality expectations during
elicitation, you are lucky if the product satisfies them.

 Disappointed users and frustrated developers are the more typical outcome.

 Quality attributes serve as the origin of many functional
requirements.

* They also drive significant architectural and design decisions.

* |[t’s far more costly to re-architect a completed system to achieve essential
quality goals than to design for them at the outset.

Software Quality Attributes

* Performance * Security
— execution speed — controlled access to system, data
— response time — isolation of data, programs
— throughput — protect against theft, vandalism
e.g., “up to 30 simultaneous calls” © Usab”ity
* Reliability — how easy to learn / use
— fault-tolerant — user productivity
— mean-time to failure * Scalability
— data backups — workload
* Robustness — number of users
— tolerates invalid input — size of data sets
— fault-tolerant — peak use

— fail-safe / -secure
— degrades gracefully under stress

Efficiency (capacity)

— user productivity

* Adaptability — utilization of resources
— ease of adding new functionality * Accuracy / precision
— reusable in other environments — tolerance of computation errors
— self-optimizing — precision of computation results

— self-healing
UWaterloo C5445/ECE451/CS645 Winter 2024

Software Quality Attributes

Design constraints Process Requirements
—interfaces to other systems e Resources
—COTS components

—programming language — personnel development

— costs

Operating Constraints —development schedule

—location * Documentation
—size, power consumption - audlencg
—temperature, humidity —conventions
—operating costs —readability
—accessibility (for maintenance) * Complexity (of code)
—comments / KLOC
Product-family requirements — coupling / cohesion
—modifiability — cyclomatic complexity
—portability — use of multiple inherit.
—reusability overloading, templates

—Ul * Standards compliance

UWaterloo CS445/ECE451/CS645 Winter 2024

Software Quality Requirements

External quality

Availability
Installability
Integrity
Interoperability
Performance
Reliability
Robustness
Safety

Security
Usability

Brief description

The extent to which the system’s services are available when and where they are needed

How easy it is to correctly install, uninstall, and reinstall the application

The extent to which the system protects against data inaccuracy and loss

How easily the system can interconnect and exchange data with other systems or components
How quickly and predictably the system responds to user inputs or other events

How long the system runs before experiencing a failure

How well the system responds to unexpected operating conditions

How well the system protects against injury or damage

How well the system protects against unauthorized access to the application and its data

How easy it is for people to learn, remember, and use the system

Internal quality

Efficiency
Modifiability
Portability
Reusability
Scalability
Verifiability

Brief description

How efficiently the system uses computer resources

How easy it is to maintain, change, enhance, and restructure the system

How easily the system can be made to work in other operating environments

To what extent components can be used in other systems

How easily the system can grow to handle more users, transactions, servers, or other extensions
How readily developers and testers can confirm that the software was implemented correctly

UWaterloo CS445/ECE451/CS645 Winter 2024

Trade-offs

* In an ideal universe, every system would exhibit the maximum
possible value for all its attributes.

* The system would be available at all times, would never fail, would
supply instantaneous results that are always correct, would block all
attempts at unauthorized access, and would never confuse a user.

* In reality, trade-offs and conflicts between specific attributes make
it impossible to maximize all of them simultaneously.

» Because perfection is unattainable, you must determine which

attributes are most im
craft specific quality o
designers can make ap

portant to your project’s success. Then you can
djectives for these essential attributes so

propriate choices.

. T
. T
. T

Examples of Quality Requirements

ne interface shall be user friendly
ne system should be available the vast majority of the time

ne user shall be able to learn to use the system very quickly

UWaterloo CS445/ECE451/CS645 Winter 2024

Fit critenia

Fit criteria express quality requirements in a way that makes it
possible, objectively, to divide solutions into those that are acceptable

and those that are not.

A fit criterion quantifies the extent to which a quality requirement
must be met.

Example: Measuring Reliability

Reliability can be defined as a percentage likelihood of success,
downtime, the absolute humber of failures, ...

Example: Telephone network
The entire network can fail no more than, on average, 5 minutes per
Year, but failures of individual switches can fail up to 2 hours per
Year.

Example: Patient monitoring system
The system may fail for up to 1 hour per year, but
doctors or nurses should be alerted of the failure in those cases. More frequent
failure of individual components is unacceptable.

Richer Fit Criteria

CPU Utilization 20% 25% 30%
Usability 40 tasks/hour 30 tasks/hour 20 tasks/hour

11

Fit Criteria - Measurement

* The hardest part of testing a requirement against an agreed-upon
measurement is defining the appropriate measure for the
requirement.

« Example:
 Stakeholder asks for a “nice” product. How to measure “nice”?
 Need measurement of niceness!
* Must be agreeable to stakeholder.

* Once you define how to measure “niceness”, you can define a
requirement to build the product agreeably.

So how to measure nice ?

* Interrogate users and find:
* nice => “liked by staff members”
 “liked by staff members” => “take to product instinctively” and
“don’t hesitate to use”
* We can measure the duration of hesitation!

* If our stakeholder agrees, we now have a good measurement
for “nice.”

If you can’t quantify
something, it cannot be a
requirement.

External Quality Attributes

* Availability

* Installability

* Integrity

* Interoperability
* Performance

* Reliability

* Robustness
 Safety

* Security
 Usability

UWaterloo CS445/ECE451/CS645 Winter 2024

15

Availability

* Availability measures the planned-up time during which the system’s
services are available for use and fully operational.

« Formally, availability equals the uptime ratio to the sum of uptime
and downtime.

AVL-1. The system shall be at least 95 percent available on weekdays between
6:00 A.M. and midnight Eastern Time and at least 99 percent available on
weekdays between 3:00 PM. and 5:00 PM. Eastern Time.

AVL-2. Downtime excluded from the calculation of availability consists of
maintenance scheduled from 6:00 PM. Sunday Pacific Time through 3:00 A.M.
Monday Pacific Time.

Installability

* Installability describes how easy it is to perform these operations
correctly.

* Increasing a system’s installability reduces the time, cost, user
disruption, error frequency, and skill level needed for an installation

operation.

Examples:

INS-1. An untrained user shall be able to successfully perform an initial
installation of the application in an average of 10 minutes.

INS-2. When installing an upgraded application version, all customizations in the
user’s profile shall be retained and converted to the new version’s data format if
needed.

INS-3. The installation program shall verify the correctness of the download
before beginning the installation process.

INS-4. Installing this software on a server requires administrator privileges.

INS-5. Following successful installation, the installation program shall delete all
temporary, backup, obsolete, and unneeded files associated with the application.

Integrity

* Integrity deals with preventing information loss and preserving the
correctness of data entered into the system.

* Integrity requirements have no tolerance for error: the data is either
in good shape and protected or not.

 Data integrity also addresses the accuracy and proper formatting of
the data

Examples:

INT-1. After a file backup, the system shall verify the backup copy against the
original and report any discrepancies.

INT-2. The system shall protect against the unauthorized addition, deletion, or
modification of data.

INT-3. The Chemical Tracking System shall confirm that an encoded chemical
structure imported from third-party structure-drawing tools represents a valid
chemical structure.

INT-4. The system shall confirm daily that the application executables have not
been modified by adding unauthorized code.

Interoperability

* Interoperability indicates how readily the system can exchange data
and services with other software systems and how easily it can
integrate with external hardware devices.

IOP-1. The Chemical Tracking System shall be able to import any valid chemical
structure from the ChemDraw (version 13.0 or earlier) and MarvinSketch (version
5.0 or earlier) tools.

IOP-2. The Chemical Tracking System shall be able to import any chemical
structure encoded using the SMILES (simplified molecular-input line-entry system)
notation.

Performance

* Some aspects of performance

Performance dimension
Response time

Throughput

Data capacity

Dynamic capacity

Predictability in real-time systems
Latency

Behavior in degraded modes or
overloaded conditions

Example

Number of seconds to display a webpage

Credit card transactions processed per second

Maximum number of records stored in a database

Maximum number of concurrent users of a social media website
Hard timing requirements for an airplane’s flight-control system
Time delays in music recording and production software

A natural disaster leads to a massive number of emergency telephone
system calls

UWaterloo CS445/ECE451/CS645 Winter 2024 22

Examples:

PER-1. Authorization of an ATM withdrawal request shall take no more than 2.0
seconds.

PER-2. The anti-lock braking system speed sensors shall report wheel speeds every
two milliseconds with a variation not to exceed 0.1 milliseconds.

PER-3. Webpages shall fully download in an average of 3 seconds or less over 30
megabits/second Internet connection.

PER-4. At least 98 percent of the time, the trading system shall update the
transaction status display within 1 second after the completion of each trade.

Reliability

* The probability of the software executing without failure for a
specific period.
* Ways to specify and measure software reliability include:

 the percentage of operations that are completed correctly,

» the average length of time the system runs before failing (mean time
between failures, or MTBF), and

* the maximum acceptable probability of a failure during a given period.

REL-1. At most, five experimental runs out of 1,000 can be lost because of
software failures.

REL-2. The mean time between failures of the card reader component shall be at
least 90 days.

Monte Carlo Techniques

Monte Carlo techniques: estimate an unknown quantity using a known
amount.

unknown

known
area

Number of points in shape Area of Shape

ot
——

Total number of points Known Area of Rectangle

UWaterloo CS445/ECE451/CS645 Winter 2024 25

Monte Carlo Techniques

We can use Monte Carlo techniques to estimate the number of

bugs remaining in a program (reliability).
« Plant a known number of errors into the program which the testing team does
not know about.

* Then compare the number of seeded errors the team detects with the total
number of errors it detects to estimate the total number of bugs in the
program.

unknown
errors

known # of
seeded errors

detected seeded errors # detected errors

~
_~

seeded errors # errors in the program 2

Problems with this approach:

* Not all bugs are equal
« some are more difficult to find/detect than others
« some are more difficult to seed than others
« some have a more significant negative impact than others

* Fixing bugs will create more bugs

UWaterloo CS445/ECE451/CS645 Winter 2024

27

Robustness

* The degree to which a system functions correctly when confronted with
invalid inputs, defects in connected software or hardware components,
external attacks or unexpected operating conditions.

* Other attribute terms associated with robustness are:
e fault tolerance
* survivability
* recoverability

ROB-1. If the text editor fails before the user saves the file, it shall recover the
contents of the file being edited as of, at most, one minute before the failure the
next time the same user launches the application.

ROB-2. All plot description parameters shall have default values specified, which
the Graphics Engine shall use if a parameter’s input data is missing or invalid.

Safety

* The need to prevent a system from doing any injury to people or
damage to property.

* Mig
anc
SuC

nt be dictated by government regulations or other business rules,
legal or certification issues could be associated with satisfying

N requirements.

 Safety requirements frequently are written in the form of conditions
or actions the system must not allow to occur.

SAF-1. The user shall be able to see a list of all ingredients in any menu items,
with highlighted ingredients known to cause allergic reactions in more than 0.5
percent of the North American population.

SAF-2

. If the reactor vessel’s temperature rises faster than 5°C per minute, the

Chemical Reactor Control System shall turn off the heat source and signal a
warning to the operator.

Security

* Security deals with blocking unauthorized access to system functions
or data, ensuring that the software is protected from malware
attacks, and so on.

* Some considerations to examine when eliciting security requirements:
« User authorization or privilege levels and user access controls
« User identification and authentication
» Data privacy
 Deliberate data destruction, corruption, or theft

« Protection against viruses, worms, Trojan horses, spyware, rootkits, and other
malware

» Firewall and other network security issues
« Encryption of secure data
 Building audit trails of operations performed and access attempts

Examples:

« SEC-1. The system shall lock a user’s account after four unsuccessful login
attempts within five minutes.

« SEC-2. The system shall log all attempts to access secure data by users having
insufficient privilege levels.

» SEC-3. A user shall have to change the temporary password assigned by the security
officer to a previously unused password immediately following the first successful
login with the temporary password.

» SEC-4. A door unlocks that results from a successful security badge read shall keep
the door unlocked for 8.0 seconds, with a tolerance of 0.5 seconds.

« SEC-5. The resident antimalware software shall quarantine any incoming Internet
traffic that exhibits characteristics of known or suspected virus signatures.

« SEC-6. The magnetometer shall detect at least 99.9 percent of prohibited objects,
with a false positive rate not to exceed 1 percent.

« SEC-7. Only users who have Auditor access privileges shall be able to view
customer transaction histories.

Usability

 Usability addresses the countless factors that constitute what people
describe colloquially as user-friendliness, ease of use, and human
engineering.

Possible Design Approaches for Ease of Learning and Ease of Use

Ease of learning Ease of use

Verbose prompts Keyboard shortcuts

Wizards Rich, customizable menus and toolbars

Visible menu options Multiple ways to access the same function

Meaningful, plain-language messages Autocompletion of entries

Help screens and tooltips Autocorrection of errors

Similarity to other familiar systems Macro recording and scripting capabilities

Limited number of options and widgets displayed Ability to carry over information from a previous transaction
Automatically fill in form fields
Command-line interface

UWaterloo CS445/ECE451/CS645 Winter 2024 33

Usability

« Usability indicators include:

* The average time needed for a specific type of user to complete a
particular task correctly.

 How many transactions can the user complete correctly in a given period?

* What percentage of tasks can the user complete correctly without needing
help?

 How many errors the user makes when completing a task?

 How many tries it takes the user to accomplish a particular task, like
finding a specific function buried somewhere in the menus?

* The delay or wait time when performing a task.

« The number of interactions (mouse clicks, keystrokes, touch-screen
gestures) required to get to a piece of information or to accomplish a task.

Examples

USE-1. A trained user shall be able to submit a request for a chemical from a
vendor catalogue in an average of three minutes and a maximum of five minutes,
95 percent of the time.

USE-2. All functions on the File menu shall have defined shortcut keys that use
the Control key pressed simultaneously with one other. Menu commands
appearing in Microsoft Word shall use the same default shortcut keys Word uses.

USE-3. 95 percent of chemists who have never used the Chemical Tracking System
before shall be able to request a chemical correctly within 15 minutes of
orientation.

Internal quality attributes

« Efficiency

* Modifiability
* Portability
 Reusability

* Scalability

* Verifiability

UWaterloo CS445/ECE451/CS645 Winter 2024

36

Efficiency

 Efficiency is closely related to the external quality attribute of
performance.

 Efficiency measures how well the system utilizes processor capacity, disk
space, memory, or communication bandwidth.

* If a system consumes too much of the available resources, users will
encounter degraded performance.

EFF-1. At least 30 percent of the processor capacity and memory available
to the application shall be unused at the planned peak load conditions.

EFF-2. The system shall warn the operator when the user load exceeds 80
percent of the maximum planned capacity.

Modifiability

* Modifiability addresses how easily the software designs and code can
be understood, changed, and extended.

* Some aspects of modifiability

Maintenance type

Corrective

Perfective

Adaptive

Field support

Modifiability dimensions

Maintainability,
understandability

Flexibility, extensibility, and
augmentability

Maintainability

Supportability

Description

Correcting defects

Enhancing and modifying functionality to meet new business
needs and requirements

Modifying the system to function in an altered operating
environment without adding new capabilities

Correcting faults, servicing devices, or repairing devices in
their operating environment

UWaterloo CS445/ECE451/CS645 Winter 2024 38

Examples

MOD-1. A maintenance programmer experienced with the system shall be able to
modify existing reports to conform to revised chemical-reporting regulations from
the federal government with 10 hours or less of development effort.

MOD-2. Function calls shall not be nested more than two levels deep.

SUP-1. A certified repair technician shall be able to replace the scanner module in
no more than 10 minutes.

SUP-2. The printer shall display an error message if replacement ink cartridges
were not inserted in the proper slots.

Portability

* The effort needed to migrate software from one operating
environment to another.

* The ability to internationalize and localize a product.

 Portability has become increasingly important as applications must
run in multiple environments, such as Windows, Mac, and Linux; iOS
and Android; and PCs, tablets, and phones. Data portability
requirements are also necessary.

POR-1. Modifying the iOS version of the application to run on Android devices
shall require changing at most 10 percent of the source code.

POR-2. The user shall be able to port browser bookmarks to and from Firefox,
Internet Explorer, Opera, Chrome, and Safari.

POR-3. The platform migration tool shall transfer customized user profiles to the
new installation without user action.

Reusability

* The relative effort required to convert a software component for other
applications.

« Reusable software must be modular, well documented, independent of a
specific application and operating environment, and somewhat generic in
capability.

» Reusability goals are challenging to quantify. Specify which elements of
the new system need to be constructed in a manner that facilitates their
reuse.

REU-1. The chemical structure input functions shall be reusable in other object code-
level applications.

REU-2. At least 30 percent of the application architecture shall be reused from the
approved reference architectures.

REU-3. The pricing algorithms shall be reusable by future store-management
applications.

Scalability

 Scalability requirements address the applicant’s ability to grow to
accommodate more users, data, servers, geographic locations,
transactions, network traffic, searches, and other services without
compromising performance or correctness.

SCA-1. The capacity of the emergency telephone system must be able to be
increased from 500 calls per day to 2,500 calls per day within 12 hours.

SCA-2. The website shall be able to handle a page-view growth rate of 30 percent
per quarter for at least two years without user-perceptible performance
degradation.

SCA-3. The distribution system shall accommodate up to 20 new warehouse
centers.

Verifiability

* More narrowly referred to as testability, verifiability refers to how
well software components or the integrated product can be
evaluated to demonstrate whether the system functions as expected.

 Designing for verifiability is critical if the product has complex
algorithms and logic or contains subtle functionality
interrelationships.

* Verifiability is also essential if the product is often modified because
it will undergo frequent regression testing to determine whether the
changes damaged any existing functionality.

» Designing software for verifiability means making it easy to place the
software into the desired pretest state, provide the necessary test
data, and observe the test result.

Examples

VER-1. The development environment configuration shall be identical to the test
configuration environment to avoid irreproducible testing failures.

VER-2. A tester shall be able to configure which execution results are logged
during testing.

VER-3. The developer shall be able to set the computational module to show the
interim results of any specified algorithm group for debugging purposes.

VER-4. The maximum cyclomatic complexity of a module shall not exceed 20.

Cyclomatic complexity measures the number of logic branches in a source code
module. Adding more branches and loops to a module makes it harder to
understand, test, and maintain.

Quality Attributes Trade-offs

S ‘0\\\6\\7\ & 5
.§$§e°d ?}\%6& S ‘OQQ‘:&%&O&@°°$\&\’°\$§&\"$&‘Z}&Q A 7;6‘.\\
SNBSS ERARSSESES

Availability + +
Efficiency + - =+ |- - +
Installability + + +
Integrity - - - - + +
Interoperability | + - |- - |+ |+ + | - -
Modifiability + - - + | + +
Performance + - | - - - -
Portability - + | == + -
Reliability + | - + + | - + | + +
Reusability - - |+ |+ |-+ -
Robustness + |-+ |+ |+ - + + |+ | +
Safety - + | + - + +
Scalability + | + + + |+ | + +
Usability - | + - | =" + + | +
Verifiability + + | + + + |+ |+ |+ +

UWaterloo CS445/ECE451/CS645 Winter 2024

Constraints

A constraint places restrictions on the design or implementation
choices available to the developer.

» External stakeholders can impose constraints. These other systems
interact with the one you are building or maintaining or other life
cycle activities for your systems, such as transition and maintenance.

* Other constraints result from existing agreements, management, and
technical decisions (ISO/IEC/IEEE 2011).

UWaterloo CS445/ECE451/CS645 Winter 2024 46

Constraints

* Sources of constraints include:

* Specific technologies, tools, languages, and databases that must be used or
avoided.

 Restrictions because of the product’s operating environment or platform,
such as the types and versions of web browsers or operating systems used.

» Required development conventions or standards. (For instance, if the
customer’s organization maintains the software, the organization might
specify design notations and coding standards that a subcontractor must
follow.)

» Backward compatibility with earlier products and potential forward
compatibility, such as knowing which software version was used to create a
specific data file.

 Limitations or compliance requirements imposed by regulations or other
business rules.

Constraints

e Sources of constraints include:

* Hardware limitations include timing requirements, memory or processor
restrictions, size, weight, materials, or cost.

* Physical restrictions because of the operating environment, user
characteristics, or limitations.

* Existing interface conventions to be followed when enhancing an
existing product.

* Interfaces with other systems, such as data formats and communication
protocols.

* Restrictions because of the display size, as when running on a tablet or
phone.

 Standard data interchange formats used, such as XML or RosettaNet for
e-business.

Examples

CON-1. The user clicks at the top of the project list to change the sort sequence.
[specific user interface control imposed as a design constraint on a functional

requirement]

CON-2. Only open-source software available under the GNU General Public License may

be used to implement the product. [implementation constraint]

CON-3. The application must use Microsoft .NET framework 4.5. [architecture constraint]
CON-4. ATMs contain only $20 bills. [physical constraint]

CON-5. Online payments may be made only through PayPal. [design constraint]

CON-6. All textual data the application uses shall be stored in XML files. [data

constraint]

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Quality Requirements

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Behavioural Modelling

Glossary

« System behaviour: how a system acts and reacts.

* Behavior model: a view of a system that emphasizes the system’s
behaviour as a whole (as it appears to outside users).

* State-driven behaviour: means that the object’s behaviour can be
divided into disjoint sets.

UML State Diagrams

 State diagram: Shows data and behaviour of a single object
throughout its lifetime.

 set of states (including an initial start state)
* transitions between states
 entire diagram is drawn from that object’s perspective

* What objects are best used with state diagrams?
* large, complex objects with a long lifespan
« domain (“model”) objects
 not valuable for doing state diagrams for every class in the system!

« Commonly used in design to describe an object’s behaviour as a guide
to implementation

» Used in RE to model interface specifications (e.g. Ul)
 Specify each object’s contribution to all scenarios of all use cases.

UML State Diagrams

* Represented by Finite State Machine (FSM)
 Finite State Automaton (FSA) is another term for FSM.

UWaterloo CS445/ECE451/CS645 Winter 2024

States

* State: conceptual description of the data in the object
 represented by the object’s field values

central object’s perspective
 only include states/concepts that
this object can see and influence <
« do not include every possible value . - l Wait }
for the fields; only ones that are
conceptually different

 Entire diagram is drawn from the oitial poeudostate l

Transitions

* Transition: movement from one state to another

[. 1 candle removed [door closed] / reveal lock
a

J /L Lock

« Event [condition] / action
« event: triggers (potential) state change
 condition: a boolean condition that must be true
e action: any behaviour executed during the transition (optional)

* Transitions must be mutually exclusive (deterministic) {d Seerenns J
it must be clear on what transition to take for an event

« most transitions are instantaneous (existing or measured at a particular
instant), except “do” activities

Note:

* Event is a noteworthy or significant occurrence in the environment.
 input message from the env. (login request)
« change in the env. (coin inserted, elevator button pressed)
« passage of time
* multiple events on a transition label are alternative triggers

» Condition is a Boolean expression:
« over domain model phenomena
 over state-machine variables

 Action is the system’s response to an event; it is non-interruptible.
* output message

« change to env phen. (Turnstile.locked := true. AddLoan(m:LibraryMember,
p:Publication, today:Date)

« multiple actions are separated by “;” and execute sequentially

Example
« Event Start Test changes the state from State 1 to State 2.

{ State1 J otart test { State2 J

* The transition takes place when the event Restart test occurs and the
power is false.

) Restart Test [power = false] (
State1 J 1 State2

Example

* The variable status is set to F the event Abort occurs, provided that
power is true.

) Abort test [power = true] / status = F (
State1 >

* No conditions on cancelling test. The variable status is set to C.

) Cancel test / status = C (
ate > ate
State1 J L State2

Example

* No event on the transition. The transition happens automatically.

* No event on the transition. The transition happens automatically,
provided that the condition evaluates to true.

{ State1 J [power = falsel] { State2 J

Example

* No event on the transition. The transition happens automatically, and
power is set to false.

{ State1 J / power - false { State2 J

* No event on the transition. The transition happens automatically,
provided that the condition evaluates to true. Status is set to P.

{) [power = true] / status = P (J
State1 J 1 Stated

How are transactions handled?

* If an object is in a state S that responds to an event E, it acts upon
that event.

* |t transitions to the specified state if the event triggers a transition, and the
condition (if any) on that transition evaluates to true.

* |t executes any actions associated with that transition.

* Events are quietly discarded if:
« A transition is triggered, but the transition’s condition evaluates to false.
* The event does not explicitly trigger a transition or reaction.

Internal Activities

* Internal activity: actions that the
central object takes on itself

* sometimes drawn as self-transitions - ——— x
(events that stay in the same state)

entry /highlight = true

do / count keystrokes

exit / highlight = false
\

* entry/exit activities
* reasons to start/stop being in that state

» Take time; interruptible; may require computation.

Composite State

» Combines states and transitions that work together towards
a common goal. There are two kinds:
1. Hierarchical (simple / or-states)
2. Concurrent (orthogonal / and-states)

Hierarchical State

Hierarchy is used to cluster states with similar behaviours.

* One transition leaving a superstate represents a transition from each of the
superstate’s descendent states.

UWaterloo CS445/ECE451/CS645 Winter 2024 15

Exercise

1.What happens if
event z occurs
when in state D?

2.What happens if
event y occurs
when in state D?

3.Can the
execution ever
leave state C?

UWaterloo CS445/ECE451/CS645 Winter 2024

16

Concurrent State

Some systems have orthogonal behaviors that are best modelled as
concurrent state machines

« Regions within a concurrent state execute in parallel.
 Each has its own thread of control.
 Each can “see” and react to events /conditions in the world

Concurrent State

Publication[pl

borrow(m,p) / Borrowitem(m,p,today)

OnLoan

return(p) / Returnitem(p, toda lost(p)

reserve(p)

reserve(p)
unreserve(p)

lost(p)
borrow(m.p) / Borrowltem(m,p today)

‘ ReserveShelf

return(p) / Returnitem(p, today)

N

Publicationlpl

borrow(m,p) / Borrowltem(m, p, today)

e]

return(p) / Returnltem(p, today)

0\

reserve(p)
[not inState(InStacks[p

a return(p) / Returnltem(p. today)
serve(p) [iInState(InStacks[p] Reserved \

[NotReserved

unreserve(p)

lost(p) :

UWaterloo CS445/ECE451/CS645 Winter 2024

18

Final State

A transition that has no

event or condition in its

label is enabled when

its

e source state is basic
and idle, or

* source superstate
entered its final
state, or

e source basic state has
finished internal
activity

UWaterloo CS445/ECE451/CS645 Winter 2024 19

Concurrency and Final States

Incomplete
.——{ Lab1 ’Iab done { | ab2 lab done;@
° [Term project done _@

Project

[Final
° - pPass /@
Exam J '\.J
— fal

—

UWaterloo CS445/ECE451/CS645 Winter 2024

20

Sequential decomposition: vending machine example

o—

after (3 secs)

UWaterloo CS445/ECE451/CS645 Winter 2024

Coinslnsertion

Idle { MoneyCollected }

4 N k
N Cancellation ~

Selection (ltem)

[Change <0]

\ 4

[ChangeChecked }

[Change = 0] \[Change > 0]

[ItemGiven

[ChangeGiven }

GrlpTo Row }

|Roka
[GrlpToItem }

lltemOk
ltemPushed 1

[
Y,

21

Sequential decomposition: cash machine example

\Ko-card
| e

ﬂ:tive
Validatin
" 4= Cardlnsertion - (E 2
e > -car
o— « A/

L Selection
inheritance [Continue] \

Processing }

[not Continue] \A

Maintenance
Request End

A 4

Printing }

entry / readCard [
\eiit/ejectCard / /

[Maintenance }

UWaterloo CS445/ECE451/CS645 Winter 2024

22

Sequential decomposition: thermostat controller

"

[Temp > Desired]

[Temp = Desired]

Idle

[Temp = Desired]

/ Cool
ooling A)

[CoolActivating]

coolReady

\4

[CoolActive }

-

/ CoolTurnOn

~

/

shutDown

[Temp < Desired]

/ Heat
eating A/‘

[HeatActivating }

l heatReady

[HeatActive }

-

~

[/ HeatTurnOn

/

Parallel and sequential decomposition: example

ﬂctlve [

KO card \

Validating]

OK-ca V

Idle CardInsertion
o
J .

Cancellation

Maintenance End
Request
/ Maintenance \
Checking

Testing Self
*— {Diagnosisl @

[Selecting]

Selection
[Contlnue‘\\A

Processing]

[not Continue] \

Fixin
g More] [not More]
’_,[Waiting }/\ Executing
Comnd Jkey (Command
\ Press /

entry / readCard [Printing]
@/ ejectCard

/

UWaterloo CS445/ECE451/CS645 Winter 2024

TrainState

SpeedState
AccelerComnd

[Acceler > 0 and
wdoorsState = ‘closed '] »
Q_{Stopped J‘ 1 O—»[Accelerating }
[Speed = 0]

: AccelerComnd ccelerComnd

: [Acceler < 0] [Acceler > 0]
synchronization: ! N
train must be in ! [Deceleratlng }
Stopped state for | (:}
getting info : \\ AccelerComnd /
doorsOpen state [Acceler < 0]
DoorsState \'\, DoorsOpening

~-o [AtStation

~
.

AccelerComnd
[Acceler > 0]

moving

and Speed =0]

O

{doorsCIosed }

<

DoorsClosing

>(doorSOpen J
L

Check Resulting Concurrent SM

* Within the concurrent state, for one controlled variable
* Unreachable states? (from the initial state)
* Missing states? (incl. final state)
« Missing or inadequate transitions? (events, guards)
* Missing actions?

* Between concurrent states, for different controlled

variables

* Synchronization needed? (as seen before)
e Shared events? Synchronizing guards? Event notification?

 Lexical consistency of event names? (as seen before)

Priority

UWaterloo CS445/ECE451/CS645 Winter 2024

27

Priority

UWaterloo CS445/ECE451/CS645 Winter 2024

28

Determinism

7

UWaterloo CS445/ECE451/CS645 Winter 2024

29

History

* Provides a way of entering a group of states based on
the system’s history in that group.

* That is, the state entered is the most recently visited
state in that group.

* |n the next slide, when event 5 occurs and state A is
entered, the history mechanism is used to determine the
next state within A.

* This is read as “enter the most recently visited state in the
group (B, C, D, E) or enter state B if this is the first visit to the
state.”

History

History Usage

* The history of a system overrides the default start state.

» A default start state must be specified for a group that uses the
history mechanism when the group is entered for the first time.

* The history of a system is only applied to the level in the hierarchy in
which it appears.

 To apply the history mechanism at a lower level in the state
hierarchy, it is necessary to use a history symbol at the lower levels.

Deep History

* An asterisk can be
attached to the history
symbol to indicate that
the history of the
system should be
applied all the way
down to the lowest
level in the state
hierarchy.

-

/

.}
[

D

/

|

i

\B

H

UWaterloo CS445/ECE451/CS645 Winter 2024

33

Termination

Time Event

A time event is the occurrence of a specific date/time or the
passage of time.
* Absolute time:

«at (12:12 pm, 12 Dec 2012)

* Relative time:

« after (10 seconds since exit from state A)
« after (10 seconds since Xx)

« after (20 minutes) // since the transition’s source state was
entered

Change Events

A change event is the event of a condition becoming true.

* The event “occurs” when the condition changes value from
false to true.

* when (temperature > 100 degrees)
* when (on)

* The event does not reoccur unless the value of the condition
becomes false and then returns to true.

* when(X) vs. [X]

Traffic Light Example

NORMAL

A

NS_GREEN ‘ ‘ NS_YELLOW
| t1: after(60 seconds) /. |)

[EW_GREEN |(EW_YELLOW
- J t4: after(60 seconds) '\ : J
: i : EW_RED
t6: when(inState(NS_RED)) t5: after(5 seconds)
\ . /
t8: RESET -) ~
ELASHING } —— t7: MALFUNCTION

UWaterloo CS445/ECE451/CS645 Winter 2024

Creating a Behavior Model

1. ldentify input and output events

2. Think of a natural partitioning into states
o Activity states - system performs activity or operation
e System modes - use different states to distinguish between different

reactions to an event
3. Consider the system’s behaviour for each state input.

4. Revise (using hierarchy, concurrency, and state events)

e Use concurrency to separate orthogonal behaviour
e Use hierarchy, and entry/exit actions, to abbreviate a common behavior

Behavioral Models Validation

 Avoid inconsistency: multiple transitions that leave the same state
under the same event/conditions.

* Ensure completeness: specify a reaction for every possible input at a
state.
* |f transitions are triggered by an event conditioned on some guard, what
happens if the guard is false?

« Walkthrough: compare the behaviour of your state diagrams with the
use-case scenarios.

* All paths through the scenarios should be pathed in the state machines.

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

Behavioural Modelling

CS445/ECE 451/CS645

Software Requirements
Specifications and Analysis

OCL

UML is not enough

Rental Car Company

name: String

1

owns

1.."

Vehicle

manufactor: String
model: String
colour: String
VIN: Integer

rented car

Duration

days: Integer

Rental Agreement

1

start: Date
end: Date
price: Float
discount: Float

customer

Date

day: Integer
month: Integer
year: Integer

= (d:Date): Boolean
> (d:Date): Boolean
< (d:Date): Boolean
>= (d:Date): Boolean
<= (d:Date): Boolean
- (d:Date): Duration
today(): Date

Person

UWaterloo CS445/ECE451/CS645 Winter 2024

1

givenName: String
familyName: String
age: Integer

Object Constraint Language

 Standardized by OMG

» Used to express constraints on UML models
* Not one of the UML notations

* Precise, yet easy to read

* |t has language constructs for
* relating classes that have no direct association
« expressing queries over objects and collections of objects

* OCL constraints :
» Are declarative; they specify what must be true, not what must be done
« Have no side effects; do not change the state of the system
« Have formal syntax and semantics; their interpretation is unambiguous

Navigation Across Associations

Vehicle

manufactor: String
model: String
colour: String
VIN: Integer

rented car

Rental Agreement
start: Date

customer

Person

1

., | end: Date
price: Float
discount: Float

Consider the object p:Person

1

givenName: String
familyName: String
age: Integer

Expression

Value

P

p.RentalAgreement

p.RentalAgreement.rented_car

p.RentalAgreement.rental_car.colour

UWaterloo CS445/ECE451/CS645 Winter 2024

Collections

An OCL expression may be over a collection(set, bag, sequence) of

objects:

context Person

self.RentalAgreement

returns set of rental agreements.

Vehicle

manufactor: String
model: String
colour: String

VIN: Integer

rented car

Rental Agreement

start: Date

1

customer

Person

., | end: Date
price: Float
discount: Float

UWaterloo CS445/ECE451/CS645 Winter 2024

1

givenName: String
familyName: String
age: Integer

Collections

Defined properties of collections are denoted using the arrow notation
(->), to distinguish from properties defined on model elements.

Note: size() is OCL operation that counts number of vehicles

context Person inv:
self.RentalAgreement.Vehicle->size() <=3.

Vehicle Rental Agreement
Person

manufactor: String rented car start: Date customer — :

: givenName: String
model: String ., | end: Date R , ,

- 1 _ 1 | familyName: String
colour: String price: Float age: Inteqer
VIN: Integer discount: Float ge: ™9

UWaterloo CS445/ECE451/CS645 Winter 2024 6

R T T e
P g o MBI SN 2N KRGS TIS S
RTT— —— mran o men

e R A e S R A e R S R N S T A S SN N S I, 9::,.‘.:‘-:.‘_3'7'/;-:-::,:,3.;37..;;’;\,,n_ TR
Example model R —
Expr%smn
CRONE = - T S b L R R R SR Y T K8 AT oA S S 3 T
-

b B

~ self
c C ~ self.b

| at1:String

context

1 | b1:String

. self.b.b
- self.b.c

: - selfb.cct The value of attnbute C :c1
29; SRR SRS AT DR P = L TENEEANT e TR SRRt ,’I";“"’i’} A R R M LA N T O L N o T R = S 2 3 At
] ~ self | The contextual instance — an instance of D
i D e E f F 9 self.e . _ An object of type E
d1:String 1 | e1:String * | f1:String self.e.el z The value of attribute E::e1
T . self.e.f | A Set(F) of objects of type F
- self.e.f.f1 A Bag(String) of values of attnbute F f1
R B S L B T T DR R P A S LS K RS e Rt ¢§>.ﬂw&gw‘:€m Y S B RIS D D A R N
_ self . The contextual instance — an instance of G
G h H i l self h | A Set(H) of objects of type H
g1:String * | h1:String 1 | i1:String ~ self.h.hi A Bag(String) of values of attribute H::h1
~ self.h.i i A Bag(l) of objects of type |
gaatext selthiil | ABag(Sting) of values of attribute 1141
e S S o S e S e T S R e S oo R A P P S DO T 3 N r*‘rm A et x\ DOBT TR e PR SO £ S e AR SR e e AL RS
. self - The contextual mstance an mstance ofJ
J K K | L - selfk | A Set(K) of objects of type K
? : 3 , X _ - self k.k1 A Bag(String) of values of attribute K::k1
j1:String k1:String 11:String 5 ' self.k. 3 A Bag(L) of objects of type L
context setf k I I1 - A Bag(String) of values of attnbute L::11
R T S Y P T T B B R B T O A S T S D P S S B St T P e T S R R P Ty N e 5D A S S R AR ST 07

Figure 25.12

Arlow and Neustadt, UML 2 and the Unified Pr;

R S A S R S RS B e SR T N S S S SR s v

O o o SR

T

Navugatlon express:ons

SO RREN LY RLAT NS

Value

S W T O AR T -

RERER A (i

DR SR P H0 720 8 N

SRR LSTRE S
29 P i 7 o/ R~ . P e S g e

SR AR
- The contextual instance — an instance of A
. An object of type B
The value of attribute B::b1
* An object of type C

= o Moo 5 R Y
SCARECSROCE s

. i e e e A

eSS

Basic Operators

Operation Notation Result Type
or aorb Boolean
and aand b Boolean
exclusive or a xor b Boolean
negation not a Boolean
equals a=b Boolean
not equals a<b Boolean
implies a implies b Boolean

UWaterloo CS445/ECE451/CS645 Winter 2024

Basic Operators

less or equal

more or equals

menus

multiplication

division

modulus
integer division
absolute value

UWaterloo CS445/ECE451/CS645 Winter 2024

Basic Operators

Operation Notation | Result Type
concatenation sl.concat(s2) String
size s.size () Integer
to lower case s.toLower () String
to upper case s.toUpper () String
substring s.substring(i, j) String
equals sl =s2 Boolean
not equals sl © s2 Boolean

UWaterloo CS445/ECE451/CS645 Winter 2024

10

Basic Operators

Operation

Description

count (object)

The number of occurrences of the object in the
collection

excludes (object)

True if the object is not an element of the collection

excludesAll (collection)

True if all elements of the parameter collection are not
present in the current collection

includes (object)

True if the object is an element of the collection

includesAll (collection)

True if all elements of the parameter collection are
present in the current collection

isEmpty ()

True if the collection contains no elements

notEmpty ()

True if the collection contains one or more element

size ()

The number of elements in the collection

sum ()

The addition of all elements in the collection. The
elements must be of a type supporting addition (such as
Real or In'reger)

UWaterloo CS445/ECE451/CS645 Winter 2024

11

Basic Operators

Operation

Description

any (expr)

Returns a random element of the source collections for which the
expression expr is frue

collect (expr)

Returns the collection of objects that result from evaluating
expr for each element in the source collection

exists (expr)

Returns true if at least one element in the source collection for
which expr is true.

forAll (expr)

Returns true if expr is true for all elements in the source
collection

isUnique (expr)

Returns true if expr has a unique value for all elements in the
source collection

iterate (...)

Iterates over all elements in the source collection

one (expr)

Returns true if there is exactly one element in the source
collection for which expr is true

reject (expr)

Returns a subcollection that contains all elements for which expr
is false.

select (expr)

Returns a subcollection that contains all elements for which expr
is true

sortedBy (expr)

Returns a collection containing all elements of the source

collection ordered by expr
UWaterloo CS445/ECE451/CS645 Winter 2024

12

Filtering Operators

To extract specific elements from an existing collection based
on the value of an expression.

* select: returns the elements that satisfy the given expression
 reject: returns the elements that falsify the given expression

Example:
Rental car companies never own red cars.

UWaterloo CS445/ECE451/CS645 Winter 2024 13

Example

Rental car companies never own red cars.

context RentalCarCompany inv:
self.owns->select(colour=“red”)->isEmpty()

Rental Car Company

name: String

1

owns

1.*

Vehicle

manufactor: String
model: String
colour: String
VIN: Integer

rented car

Duration

days: Integer

Rental Agreement

1

start: Date

. | end: Date

price: Float
discount: Float

customer

Date

day: Integer
month: Integer
year: Integer

= (d:Date): Boolean
> (d:Date): Boolean
< (d:Date): Boolean
>= (d:Date): Boolean
<= (d:Date): Boolean
- (d:Date): Duration
today(): Date

Person

1

UWaterloo CS445/ECE451/CS645 Winter 2024

givenName: String
familyName: String
age: Integer

14

Quantification

exists: Boolean operation asserts that at least one element in
a collection satisfies some expression.

Example:
Every customer rents at least one black car.

Example

Every customer rents at least one black car.

context Person inv:

self.RentalAgreement.Vehicle->exists(colour=“black”)

Rental Car Company

name: String

1

owns

1.*

Vehicle

manufactor: String
model: String
colour: String
VIN: Integer

rented car

Duration

days: Integer

Rental Agreement

1

start: Date

. | end: Date

price: Float
discount: Float

customer

Date

day: Integer
month: Integer
year: Integer

= (d:Date): Boolean
> (d:Date): Boolean
< (d:Date): Boolean
>= (d:Date): Boolean
<= (d:Date): Boolean
- (d:Date): Duration
today(): Date

Person

1

UWaterloo CS445/ECE451/CS645 Winter 2024

givenName: String
familyName: String
age: Integer

16

Quantification

forAll: Boolean operation used to assert that all set members
satisfy a given expression.

Examples:
e All cars are rented.

e No car is rented more than once each day.
e All rental cars are white.

Example

All cars are rented.

context Vehicle inv:
self.RentalAgreement->forAll(r:RentalAgreement |
r.start <= Date.today() and Date.today() <= r.end)

Date

day: Integer
month: Integer
year: Integer

= (d:Date): Boolean
> (d:Date): Boolean
name: String days: Integer < (d:Date): Boolean
>= (d:Date): Boolean
<= (d:Date): Boolean

Rental Car Company Duration

1

s - (d:Date): Duration
1.* today(): Date
Vehicle Rental Agreement
Person

manufactor: String rented car start: Date customer |— -

) givenName: String
model: String . | end: Date . . .

) 1) 1 | familyName: String
colour: String price: Float age: Integer
VIN: Integer discount: Float go: o9

UWaterloo CS445/ECE451/CS645 Winter 2024

18

Example

No car is rented more than once each day.

context Vehicle inv:

self.RentalAgreement->forAll(r1,r2: RentalAgreement |

(r1 <> r2) implies (r1.start > r2.end or r2.start > r1.end))

Rental Car Company

name: String

1

owns

1.*

Vehicle

manufactor: String
model: String
colour: String
VIN: Integer

rented car

Duration

days: Integer

Rental Agreement

1

start: Date

. | end: Date

price: Float
discount: Float

customer

Date

day: Integer
month: Integer
year: Integer

= (d:Date): Boolean
> (d:Date): Boolean
< (d:Date): Boolean
>= (d:Date): Boolean
<= (d:Date): Boolean
- (d:Date): Duration
today(): Date

Person

1

UWaterloo CS445/ECE451/CS645 Winter 2024

givenName: String
familyName: String
age: Integer

19

Example

All rental cars are white.

context RentalCarCompany inv:
self.owns->forAll(colour=“white”)

Rental Car Company

name: String

1

owns

1.*

Vehicle

manufactor: String
model: String
colour: String
VIN: Integer

rented car

Duration

days: Integer

Rental Agreement

1

start: Date

. | end: Date

price: Float
discount: Float

customer

Date

day: Integer
month: Integer
year: Integer

= (d:Date): Boolean
> (d:Date): Boolean
< (d:Date): Boolean
>= (d:Date): Boolean
<= (d:Date): Boolean
- (d:Date): Duration
today(): Date

Person

1

UWaterloo CS445/ECE451/CS645 Winter 2024

givenName: String
familyName: String
age: Integer

20

Exercise

 Every person is aged 18 or older.

context Person inv:
self.age >= 18

« No rental agreements are made whose price is less than $100.

context RentalAgreement inv:
self.price >= 100

UWaterloo CS445/ECE451/CS645 Winter 2024

21

Exercise

 All rental agreements started in or after the year 2000.

context RentalAgreement inv:
self.start.year >= 2000

* People aged 65 or older have a 10% discount in rental agreements
created in or after 2024.

context Person inv:
self.age >= 65 implies
(self.RentalAgreement->select(start.year >= 2024)->forAll(discount = 10))

context RentalAgreement inv:

self.customer.age >= 65 implies
((self.start.year >= 2024) implies (self.discount = 10))

UWaterloo CS445/ECE451/CS645 Winter 2024 22

Exercise

Bank senumerations
Gender
male
accountNumber:integer female
0.1
0..* |customer
manager 0.*
Person - Company
. - 1 managedCompanies
!sMamed - Beelean name : String
isUnemployed : Boolean numberCOfEmployees - Integer
blrthpate - Date employee employer
age : Integer _ ; T 0 _*| stockPrice(): Real
firstName : String 0.. | -
lastName : String |
gender : Gender |
) (Date) - Int wife \
income(Date) : Integer
husband | 0..1 title : String
startDate : Date
salary : Integer

I

I

l

Marriage
place : String
date : Date

UWaterloo CS445/ECE451/CS645 Winter 2024

23

Married people are of age >= 18

context Person inv:

Bank eenumeration»
Gender
male
accountNumber:Integer female
0.1
0_.* |customer
manager 0.*
Person - Company

- - 1 managedCompanies
isMarried : Boolean name : String
isUnemployed - Goolean numberCfEmployees - Integer
el e . = T D+ | stockPrice() : Real
firstName : String 0.. | -
lastName : String |
gender : Gender |
: Date) - Int wife "
income(Date) : Integer

0.1 Job

hushand | 0..1 titte : String
startDate : Date
salary : Integer

I

I

1

Marriage
place : String
date : Date

UWaterloo CS445/ECE451/CS645 Winter 2024

A company has at most 50 employees

context Company inv:

Bank aenumerations
Gender
male
accountMumber:integer female
0.1
0_* |customer
manager 0.*
Person . Company

- - 1 managedCompanies
isMarried : Boolean name : String
|§Uﬂemp'0Yed . Boolean numberOfEmployees - Integer
blnhpate - Date employee employer
age - Integer R T 0 +| stockPrice() : Real
firstName : String 0.. | .
lasiName : String |
gender : Gender I
: , : wife "
income(Date) : Integer

0.1 Job

husband | 0.1 title : String
startDate : Date
salary : Integer

I

I

1

Marriage
place : String
date : Date

UWaterloo CS445/ECE451/CS645 Winter 2024

25

N O t e Bank wenumerations

Gender

male

1) ConteXt Company inV: accountNumber:integer female

self.manager.age > 40

0_* |customer

manager 0.*
Person - Company
- 1 managedCompanies
isMarried : Boolean name - String
isUnemployed : Boolean numberQOfEmployees - Integer
age - Integer " T g +| stockPrice() : Real
firstName : String 0.. | -
2) context Person inv: o Gender |
o gender : Gender |
: , wife "
income(Date) : Integer

self.wife->notEmpty() implies 0. Job

husband | 0..1 tite : String

Self. Wife . age <= 65 startDate - Date

salary : Integer

Marriage

place : String
date : Date

UWaterloo CS445/ECE451/CS645 Winter 2024 26

All instances of Person in a Bank have unique first

n a I I l eS Bank aenumerations
Gender
male
o . accountNumber:integer female
context Bank inv:
0_.* |customer
manager 0.*
Person - Company

- - 1 managedCompanies
!sMamed - Boolean name - String
isUnemployed : Soolean numberOfEmployees - Integer
blrth!:}ate - Date employee employer
age : Integer . . T D+ | stockPrice() : Real
firstName : String 0.. | -
lasiName : String |
gender : Gender I
- (Date) - Int wife "
income(Date) : Integer

0.1 Job

husband | 0..1 titte : String
startDate : Date
salary : Integer

|

I

1

Marriage
place : String
date : Date

UWaterloo CS445/ECE451/CS645 Winter 2024 27

There is at least one employee above 50

context Company inv:

Bank cenumerations
Gender
male
accountMNumber:integer female
0.1
0_.* |customer
manager 0.*
Person - Company

- - 1 managedCompanies
isMarried : Boolean name - String
lS_Unemmoyed . Boolean numberQOfEmployees - Integer
blrthpate - Date employee employer
age - Intager . = T D+ | stockPrice() : Real
firstName : String 0.. | =
lasiName : String |
gender : Gender I
. (Date) - Int wife ,
income(Date) : Integer

0.1 Job

husband | 0..1 titte : String
startDate : Date
salary : Integer

|

I

1

Marriage
place : String
date : Date

UWaterloo CS445/ECE451/CS645 Winter 2024

28

All employees are married

context Company inv:

Bank senumeration»
Gender
male
accountNumber:integer female
0.1
0_.* |customer
manager 0.*
Person - Company

- - 1 managedCompanies
isMarried : Boolean name : String
|§Unemp|oyed . Boolean numberQOfEmployees - Integer
blrthpate - Date employee employer
age - Intager . = T D+ | stockPrice() : Real
firstName : String 0.. | --
lasiName : String |
gender : Gender I
. (Date) - Int wife ,
income(Date) : Integer

0.-1 Job

husband | 0..1 title : String
startDate : Date
salary : Integer

|

I

1

Marriage
place : String
date : Date

UWaterloo CS445/ECE451/CS645 Winter 2024

29

Object Constraint Language

The OCL enables one to write formal expressions and
constraints on object-oriented models.

Types of OCL expressions/constraints include
 Invariant properties about objects, links, and attribute values
e Initial variable or attribute values
e Pre/Postconditions of functions

e Guard conditions and assignment expressions in State Machine
diagrams

Broken Constraints

Note that constraints simply state what ought to be true. If
the execution of the system leads to an object model for
which a constraint is not true, we say that the constraint is
broken or violated.

Nothing in a constraint specification says how to recover from
a broken constraint.

OCL Tools

Several tools support OCL from both universities and industry.
These tools range from
« Parsers and type checkers

e Evaluators that can check an OCL expression against all instances
of a UML class model

e Debuggers that step through an OCL expression and check each
subsection (to locate faulty subexpression)

e Code generators that translate OCL expressions into run-time
assertions

Summary

Object Constraint Language (OCL) expresses domain
assumptions as constraints on the domain model

CS445/ECE 451/CS645

Software Requirements
Specifications & Analysis

OCL

Exercise

Model the following constraints as OCL expressions over the Flix.net
domain model.

a) Every charge of the subscription fee is $7.99.

b) Every subscription fee that is charged to a subscription is charged
on the monthly anniversary of the day on which the subscription
was activated.

c) One must have an active subscription to stream videos.

d) Videos can be streamed only to devices (i.e., TVs, computers)
within Canada.

Exercise

User

Subscriber

Date

day: Integer
month: Integer
year: Integer

= (d:Date): Boolean
> (d:Date): Boolean
< (d:Date): Boolean
>= (d:Date): Boolean
<= (d:Date): Boolean
- (d:Date): Duration
today(): Date

Duration

days: Integer

Address

* Device + browses 0.1 Library
location: String
\ streams
- 0.1 1..*
StreamRate Show -

. 2 * eries
rate.{r;orfmal. title: String R o -
paused, fast, _ title: String
reverse} genre: String

1.* 1.*
director(1..* 1..*lactor
Person
fee = 87.99B
1.* name: String
Subscription Charge
name: String > foo: Float
address: Address date: Date
activationDate: Date amount: Float
status: {active, suspended, cancelled}

UWaterloo CS445/ECE451/CS645 Winter 2024

streetNumber: Integer
street: String

city: String
state/province: String
postalCode: Integer

36

CS445/ECE 451/CS645

Software Requirements
Specifications & Analysis

Functional Modelling

So far we learned how to model the system by:
* Use case Diagrams

* Describe the functional behaviour of the system as seen by the user.

* Class diagrams

» Describe the static structure of the system: Objects, Attributes, Associations

* Sequence diagrams

» Describe the dynamic behaviour between actors and the system and between

objects of the system

The operation model

* Functional view of the system being modelled

* Multiple uses:
 software specifications
* input for development team
* description of environment tasks and procedures
* basis for deriving:

 black-box test data
e executable specs for animation, prototyping

* definition of function points (for size estimation), work units, user
manual sections

» satisfaction arguments, traceability management

What are operations?

e Operation Op = set of input-output state pairs (binary relation)

e input variable: object instance that its state affects the application of the
operation

« output variable: object instance its state is changed by the application of the
operation

o Operation application yields state transition from a state in
InputStateSet to a state in OutputStateSet

instance i/o variable

Stop (tr) OpenDoors (tr)

N X £ N

tr.Speed =0 tr.Speed =0
tr.DoorsState |— ‘closed’ tr.DoorsState | ‘open’

state variable

What are operations? ¢

* Op must operationalize underlying goals from the goal model
« To make these satisfied => application under restricted conditions

* Generally deterministic: relation over states is a function
« No multiple alternative outputs from the same input

« Atomic: map input state to state at next smallest time unit
« For operations lasting some duration: use startOp/endOp events

* May be applied concurrently with others
* e.g. OpenDoors || DisplayWhichPlatform

» Software operations, environment operations (tasks)
» e.g. PlanMeeting, SendConstraints

Characterizing system operations

 Basic features: Name, Definition, Category

* Signature

 declares the input-output relation over states
 input/output variables and their type (object from object model)

e scope may be restricted to specific attributes (nothing else changes)

e used in pre-, postconditions

 graphical or textual annotation

nput
P tr.Speed,

\

0 {r.DoorsState
pen

/ tr DoorsState
output

TrainInfo

applles to these attribytes only

____________________/ ___________

instance varzable 05]ect changes thzs attribute only

UWaterloo CS445/ECE451/CS645 Winter 2024

Characterizing system operations (2)

 Conditions capturing the class of state transitions that define the
operation

* DomPre: condition characterizing the class of input states in the domain

 DomPost: condition characterizing the class of output states in the domain

'DomPre tr.DoorsState = ‘closed”
SO0l DomPost tr.Doors State = ‘open’ J:

UWaterloo CS445/ECE451/CS645 Winter 2024

Characterizing system operations (3)

* An agent performs an operation if the applications of this operation
are activated by instances of this agent

 Consistency rules between the operation model and agent model:

« Every input/output state variable in the signature of operation
performed by an agent must be monitored/controlled by it in the
agent model

* Unique performer; every operation is performed by precisely one
agent

Textual Functional Model

Operation
Def:
Input:
Output:
DomPre:
DomPost:

UWaterloo CS445/ECE451/CS645 Winter 2024

Example

Operation OpenDoors
Def: Operation controlling the opening of all train doors.
Input: tr:Train /{Speed, Position, DoorsState},
Output: ir: Train / DoorsState
DomPre: The doors of train tr are closed.
The speed of train tris 0.
Train tr is at a platform.
DomPost: The doors of train tr are open.

UWaterloo CS445/ECE451/CS645 Winter 2024 10

World States

The domain model represents the set of possible states
of the world (called world states).

Facebook
Member

name

* | friend of

UWaterloo CS445/ECE451/CS645 Winter 2024 11

Facebook
Member

name

.

friend of

: Facebook

Member

Betty

I :Facebook - Facebook
Member Member
Archie Cheryl
: Facebook
Member
Jughead

UWaterloo CS445/ECE451/CS645 Winter 2024

12

Facebook X

Member

name

i

friend of

: Facebook
n Member
Reg_gie
: Facebook : Facebook - Facebook
Member Member Member
Veronica Archie Cheryl
: Facebook : Facebook
| Member Member
Betty Jughead

UWaterloo CS445/ECE451/CS645 Winter 2024

13

The functional model expresses the system
functionality in terms of system changes to the world
state.

- Facebook
Member
Veronica

: Facebook

: Member
friend of Ahie
- Facebook e —
%———m—bﬂ‘ : Facebook
"ey_" friend of Member

FRIEND (Betty : FacebookMember,
Veronica : FacebookMember)

- Facebook

friend of

Jughead

Member

Veronica
T —

: Facebook
: Member
friend of Arc_hie
- Facebook e
5 t![\llember : Facebook
L friend of M
Jughead

UWaterloo C5445/ECE451/CS645 Winter 2024

15

Abstract World State

* From the domain model (which defines types), we derive an abstract
world state model (which defines sets of instances)

« Example:

Abstract World State
Members: set of Library Member
Pubs: set of Publication
Borrows c Library Member x Publication

Library . Publication
Member 0..1 borrows

copyNumber: Integer
memberl|D: Integer Title: String

name: String

Exceptions

Library Publication

Member 0..1 borrows

copyNumber: Integer
memberID: Integer Title: String
name: String

FindBorrowedPubs(memberlD): set of Publication
pre: Members[memberID] = @
modifies: <none>
post: return Borrows[memberID]
exception: if(Members[memberlID]) = @
then return error message

UWaterloo CS445/ECE451/CS645 Winter 2024

Using the domain model diagram for Flix.net

Model the following operations of the system as functions
over an abstract world state of your domain model. Your
functions should specify all changes to the domain that a
function realizes, including new or deleted links -- even those
with actors. Specify exceptions if appropriate. You do not
need to specify an initial abstract world state. Include also
short descriptions of the parameters of your functions.

 Suspending a subscription

* Charging a subscription fee to a subscription

* |Initiating a video stream to a device (i.e., TV or computer)

Suspending a subscription

Subscriber
1
\ Fee = $7.99
1"
Subscription
. Charge
name: String
. | fee: Float
address: Address >————
date: Date
activationDate: Date
amount: Float

status: {active, suspended, cancelled}

UWaterloo CS445/ECE451/CS645 Winter 2024

19

Suspending a subscription

Let s be the subscription to be
suspended. i

Subscriber

Suspend (s:Subscription) \‘ o s
pre: <none> bl

modifies: Subscription — —— —
name: String

post: s.status = “suspended” N .| fee: Fioat

. address: ress >—————

exception: <none> date: Date

activationDate: Date
amount: Float

status: {active, suspended, cancelled}

UWaterloo CS445/ECE451/CS645 Winter 2024 20

Charging a subscription fee to a subscription

Subscriber
1
\ Fee = $7.99
Py
Subscription
: Charge
name: String
. | fee: Float
address: Address >————
date: Date
activationDate: Date
amount: Float
status: {active, suspended, cancelled}

UWaterloo CS445/ECE451/CS645 Winter 2024

Charging a subscription fee to a subscription

Let s be the subscription to be charged.

ChargeFee(s:Subscription) i
pre: s.status=*active” Subscriber
modifies: s.charge, Charges \ N Fos = $7.99
post: new c’:Charge Subscrption
c’ = (date::today, amount::fee) |rme:suns | r—
Charges’ = Charges u C’ adess:Rdess | ate: Date
5*.charge = s.charge U ¢’ e ey L
exception: if s.status <> “active”
then no change to the world state

UWaterloo CS445/ECE451/CS645 Winter 2024 22

Initiating a video stream to a device (i.e., TV or computer)

location: String
User \
X\ streams
StreamRate \\)"1

rate: {normal, Show) Sorles

paused, fast, title: String 2.

reverse} title: String

genre: String
1.* 1.*
director(1..* 1.*|actor
Subscriber
1 People
\\ . name: String Fee = $7.99
Subscription
. Charge
name: String
. | fee: Float
address: Address >———
date: Date
activationDate: Date
amount: Float

status: {active, suspended, cancelled}

23

Initiating a video stream to a device (i.e., TV or computer)

Let v be the Show to be streamed, let d be the receiving device
and let s be the requesting subscriber.

InitiateStream(s:Subscriber, d:Device, v:Show)
pre: s.status = “active” and d.location = “Canada”
modifies: d, StreamRates
post: new sr’:StreamRate
sr’ = (d, v, “normal’)
StreamRates’ = StreamRates u sr’
d’=d @ (d’.streams = v) @ (d’.StreamRate = sr’)
exception: if(s.status <> “active” or d.location <> “Canada”)
then no change to the world state

CS445/ECE 451/CS645

Software Requirements
Specifications & Analysis

Functional Modelling

CS445/ECE 451/CS645

Software Requirements
Specifications & Analysis

Sequence Diagrams

Sequence Diagrams

* UML has a language for describing scenarios, that of the sequence
diagram.

* Show step-by-step what’s involved in a use case
* Which objects are relevant to the use case
« How those objects participate in the function

* You may need several sequence diagrams to describe a single-use
case

« Each sequence diagram describes one possible scenario for the use case

* Show all events external actors generate, their order, and inter-
system events. All systems are treated as a black box; the emphasis
of the diagram is events that cross the system boundary from actors
to systems.

Sequence Diagrams

* Vertical line is called an object’s lifeline
« Represents an object’s life during interaction

* Object deletion denoted by X, ending a lifeline
« Horizontal arrow is a message between two objects

* Order of messages sequences top to bottom

* Messages labeled with message name
« Optionally arguments and control information

« Control information may express conditions:
* such as [hasStock], or iteration

* Returns (dashed lines) are optional
« Use them to add clarity

System Sequence Diagram (S5D)

For a use case scenario, a SSD shows:
» The System (as a black box) :System
* The external actors that interact with System
* The System events that the actors generate

« SSD shows operations of the System in response to events, in
temporal order

* Develop SSDs for the main success scenario of a selected use case,
then frequent and salient alternative scenarios

Example: Use Case to SSD

L System
Simple Cash-only Process =¥
Sale scenario:
1.customer arrives at aPOS makeNewSale()
check out with goods and/or
services 1o purchase.

2 Cashier starts a new sale.
3.Cashier enters a new item
identifier.

4 System records new sale
line item and presents item
description,price and running

enterltem(item|D quantity)

description, total

h SEeraon P, SRR, e | s

total * [more items]
Cashier repeats steps steps
3-4 until indicates done. a endSale()

5.System presents total with total with taxes

taxes calculated. T T AT T = T T T = T T v
6.Cashier telil(s ?ustomer the '
total, and asks for payment. ment -
7.Customer pays and System Lt O >
handles payment. '
574 ...Changeduereceipt G-

S Gk Btt” Gt sEEE TEEP CETEECEEE (R

SSD for Process Sale scenario

(Larman, page 175)

box may enclose an [N
Iteration area

the *[...] is an iteration
marker and clause
indicating the box is
for iteration

return value(s)
associated with the
previous message

an bastraction that
ignores presentation
and medium

the retum line is
optional If nothing is
returned.

| ™

external actor to the .Cashier
system

P,

/O

system as black box

simple
the ™" and underline imply an instance.

the name could be "NextGenPOS" but "System” keeps it

Process Sale Scenario

System

E makeNewSale() :
: _
' enterltem(itemID, quantity) ’E
54. ... Jescription total . E
' * [more items) -
«___endSale() b |amessage I
' ' with parameters
;‘ total with taxes '
R e itis an
‘ ' abstraction
' makePayment(amount) —————""_1 | representing the
- > system event of
' , : entering the
q---changeduereceipt . ot yment data
' ysome

mechanism

UWaterloo CS445/ECE451/CS645 Winter 2024

Interaction Frame Operators

Operator Meaning

loop Execute events inside box; guard controls iteration

opt Like a simple if stmt; execute if guard is true

alt Like a cascading if stmt; execute first body whose
guard is true

par Execute fragments in parallel

ref Refers to an interaction defined in another diagram
(like a method call). Hides the details, but can have
parameters and a return value

neg The sequence diagram shows an invalid (negative)
iInteraction

sd Surrounds an entire sequence diagram (for inclusion
in other kinds of diagrams)

UWaterloo CS445/ECE451/CS645 Winter 2024

alt

bank : Bank theCheck : Check

account : Checkingaccount

[

l
il | |
| |
getdmount {) | |
amount |
I N |
| |
| |
getBalance ()l |
|
I
alt

[balance == amount]

|

T
addDebitTransactjon { check
Number , amount)

storePhotoOfChecH (theCheck)

addlnsufﬁenﬂ:unJFee]
I

noteReUJrnedCheclf { theCheck)

returnCheck (theC+eck h]

opt

register : RegisterOffice ar_: AccountsReceivable drama : Class

b=
getPastDueBalance { studentld)
pastDueBalance
<.: ..
opt J
I I
[pastDueBalance = 0]
addStudent (studentid)
etCostOfClass
g () |
classCost
=€: ..
l
chargeForClass () I
|
|

loop

analyst : FinancialAnalyst system ! ReportingSystem secSystem @ SecuritySystem : Reports availableReports : Reports reportsEnu @ Reports aReport : Report

I I I I I I
I | | I I |
getAvallableReports () | | | | | |
" getSecurityClearance userlg_)I I I I I
.. userdewancelevel I_,_I I I I I
new({) | . | I I I
. ! "u | | |
availableReports
IO st e S — | | |
getalReports {) I I I I I
| | | | |
| | | | | |
hasAnotherREport()] | I I I
|
I I I |
» | hasanotherReport I I |
.............................. | SRR o HURIRIRIARIRIRIIN SRR RIS
loop I I I I I
[hasAnotherReport = trueg]etNextRepc!‘rt() ! ! ! :
T T T Ll
P | epor | e IrI |
| I I |
| | | | |
getRequredSecurityLevel {) ! ! ! o !
[| [[=
| re‘quiredSecuritvLeveI | | U
4‘ ..
[userClearancelevel = required | | | |
Level] add (aRe ; rt) | .
i | ’I_I | I
| | | |
hasAnotherRFport()] ! ! - | |
» I hasAnotherReI;ort I u I
availableReports l I] ; |
----------------------------- T | | | |
I I

10

Rules of thumb

 Rarely use option, loop, alt/else

* These constructs complicate a diagram and make them hard to
read/interpret.

* Frequently it is better to create multiple simple diagrams

* Create sequence diagrams for use cases when it helps clarify
and visualize a complex flow

* Remember: the goal of UML is communication and
understanding

Lifetime: Creation / Deletion

a Handler

query database L

new
a Quer
- Yy
Command
new
a Database
—>
Statement
creation
execute |
- T] deletion
=TT TTTTT T T T from other
results | object
.
extract results |
U close E | :

< X
o
results

self-deletion

T

UWaterloo CS445/ECE451/CS645 Winter 2024

“Call” to Sub Diagram

sd AuthenticateUser)
:B :C
A :B :C
' ! ! authenticate(id), | |
o doX > ! | I >| |
: : doB > : | |
! I] ' } doM2 NI
I authenticate(id) ref . ' |
; > /" AuthenticateUser i i
: | I
| | I
: | I
: ref DoFoo sd DoFoo)
l -
| | yam
B Cc
f . .
| I
interaction occurrence | D : doX NI
e | |
| I
note it covers a set of lifelines / : doY >
| |
note that the sd frame it relates to : doZ H
has the same lifelines: B and C : :

Larman, Appliying UML and Patterns, 3ed

UWaterloo CS445/ECE451/CS645 Winter 2024

CS445/ECE 451/CS645

Software Requirements
Specifications & Analysis

Sequence Diagrams

CS445/ECE 451/CS645

Software Requirements
Specifications & Analysis

Use Cases and Scenarios

Requirements / Specification Models

Model: a simplified version of something complex used in analyzing
and solving problems or making predictions.

Modeling consists of building an abstraction of reality.

Uses of Models:

 Can guide elicitation

« Can provide a measure of progress

» Can help to uncover problems

* Can help us check our understanding

UML (Unified Modeling Language)

* Provides a standard way to visualize the design of a system

 Unified: it has become a world standard (OMG Object Management
Group, www. omg.org)

* Modeling: it describes a software system at a high level of
abstraction

* Language: it expresses an idea, not a methodology

* More...

* |t is an industry-standard graphical language for specifying, visualizing,
constructing, and documenting the artifacts of software systems

 The UML uses mostly graphical notations to express software projects' OO
analysis and design.

« Simplifies the complex process of software design

Types of UML Diagrams (first pass):

* Class diagrams
» Describe the static structure of the system: Objects, Attributes, Associations

* Use case Diagrams
» Describe the functional behavior of the system as seen by the user.

« Sequence diagrams
» Describe the dynamic behavior between actors and the system and between objects of the
system
 State diagrams
» Describe the dynamic behavior of an individual object (essentially a finite state
automaton)
 Activity Diagrams
* Model the dynamic behavior of a system, in particular the workflow (essentially a
flowchart)

This is only a subset of diagrams, but are most widely used

UWaterloo CS445/ECE451/CS645 Winter 2024 4

Use Case (UC)

« Each particular way to use a system is called a use case.
* |t is one case of the many ways to use the system.

« Use cases are a summary of the way that all types of users will
interact with the (proposed) system

 Use cases can help us discover/document requirements
 Should be easy to read

» Defines the interactions between system and actors

* Focuses on interaction, not internal system activities.

* A use case should not be confused with a scenario. A scenario of
system is a particular sequence of interaction steps between a user
and the system.

Which of the following is a use case?

* Order cost = order item costs * 1.06 tax.

* Promotions may not run longer than 6 months.

» Customers only become Preferred after 1 year.
* A customer has one and only one sales contact.
» Response time is less than 2 seconds.

* Uptime requirement is 99.8%.

* Number of simultaneous users will be 200 max.

Consider software to run a cell phone:

Use Cases
- call someone

Internal Functions
= transmit / receive data
= receive a call - energy (battery)
- send a message = user I/O (display, keys, ...)
= memorize a number - phone-book mgmt.

Point of view: user Point of view: developer /
designer

UWaterloo CS445/ECE451/CS645 Winter 2024

Actors and stakeholders

» Actor: anything with behavior that acts on the system. An actor might
be a person, a company or organization, a computer program, or a
computer system-hardware, software, or both.

» Stakeholder: anyone interested in the system. Stakeholder might not
“act” in any case/scenario.

* Primary vs secondary actors.

Exercise: Use case Diagram

* Flix.net is an internet service for streaming movies and TV shows to personal
computers and TVs.

* Anyone can browse the Flix.net library (by title, actor, director, and genre),
but one must have a subscription to stream videos.

« A user can activate (i.e., create), suspend, or cancel membership.

« An account is active if it has not been suspended (and not re-activated) or
cancelled.

« The subscription fee is $7.99 per month, charged on the monthly anniversary
of the subscription’s activation.

* |If a user has an active subscription and accesses the website from within
Canada, the user can stream as many videos (from the Flix.net library) as
desired at any time of the day.

* A user can pause, rewind, fast-forward or stop a stream as often as they like.

« Flix.net is an internet service for
streaming movies and TV shows to
personal computers and TVs.

« Anyone can browse the Flix.net
library (by title, actor, director, and
genre), but one must have a
subscription to stream videos.

« A user can activate (i.e., create),
suspend, or cancel membership.

« An account is active if it has not
been suspended (and not re-
activated) or cancelled.

 The subscription fee is $7.99 per
month, charged on the monthly
anniversary of the subscription’s
activation.

« If a user has an active subscription
and accesses the website from within
Canada, the user can stream as many
videos (from the Flix.net library) as
desired at any time of the day.

« A user can pause, rewind, fast-
forward or stop a stream as often as
they like.

Flix.net
Member

¥

Administrator

<<actor>>
Time

/

Flix.net

Browse
Library

Manage
Subscription

Stream Video

Manage
Library

N\

Credit Card
Authorization
System

<<include>>

* A sub-use case that is used within multiple other use cases.
* You have a piece of behaviour that is similar across many use cases
« Break this out as a separate use case and let the other ones “include” it

« Examples include
 Valuation

* Validate user interaction TR, Ty
* Sanity check on sensor inputs c
* Check for proper authorization |

Use Case B

g
i

Use Case B

UWaterloo CS445/ECE451/CS645 Winter 2024

11

Example

r

Sales

Assistant \

The Loo Store

Take
Customer

Order T~ 5<include>>

|dentify
Customer

Return Faulty <<include>>

Goods

UWaterloo CS445/ECE451/CS645 Winter 2024

12

<<extend>>

* A subcase that extends or replaces the end of an existing use case.

* A use-case is similar to another one but does a little bit more

« Put the typical behaviour in one use case and the extended behaviour somewhere else
« Capture the normal behaviour
* Try to figure out what can go wrong in each step
« Capture the extended cases in separate use-cases

* Makes it a lot easier to understand

Example

User

OfficeHours.com

<<extend>>

Get Help on

Register j¢-=-=------ Registration

UWaterloo CS445/ECE451/CS645 Winter 2024

14

What is wrong with this use case diagram?

% Identify Client

Client

” Request
Balance

UWaterloo CS445/ECE451/CS645 Winter 2024

What is wrong with this use case diagram?

UWaterloo CS445/ECE451/CS645 Winter 2024

16

What is wrong with this use case diagram?

CIBIC

Use

Request _ Fingerprint
~ < ~ip Scan
Statement =~ Cluge,
Use
Retina Scan

Use
Card and PIN

UWaterloo CS445/ECE451/CS645 Winter 2024 17

Another example:

Client

This is an extend dependency.

It indicates that use case “Withdraw /
from Checking Account” is part of use
case “Withdraw Money”, but it may or
may not be invoked.

The same is true of use case

Withdraw
Money

WaterlooTD Bank

Withdraw from

<<extend>> . Checking Account

<<extend>>

Withdraw from
Savings Account

“Withdraw from Savings Account”.

UWaterloo CS445/ECE451/CS645 Winter 2024

18

Another example:

Client

WaterlooTD Bank

Withdraw from
Checking Account

Withdraw
Money

Withdraw from
Savings Account

UWaterloo CS445/ECE451/CS645 Winter 2024

19

Another example:

Client

This is an include dependency.

It indicates that use case “Update /

Account Balance” is “included” in use
case “Transfer Money” and will be
invoked.

The same is true of use case “Select

Transfer Money

WaterlooTD Bank

Select Account
<<include>> _»

~N
<<include>> >4

Update Account
Balance

Account”.

UWaterloo CS445/ECE451/CS645 Winter 2024

20

Summary

Generalization

Extend

Include

Withdraw
Cash

Bank ATM
Transaction

«extend»

Bank ATM
Transaction

«include»

Customer
Authentication

Bank ATM
Transaction

Base use case could be abstract use case
(incomplete) or concrete (complete).

Base use case is complete (concrete) by itself, defined
independently.

Base use case is incomplete (abstract use case).

Specialized use case is required, not optional, if base
use case is abstract.

Extending use case is optional, supplementary.

Included use case required, not optional.

UWaterloo CS445/ECE451/CS645 Winter 2024

21

Example:

HosPT reception

Schedule Patient _<sextend>>
Appointment T Tt~
h \
I
<<extend>> d
Schedule Patient BN p

Hospital Admission

Outpatient
Hospital Admission

Inpatient Hospital
Admission

Flle Insurance
Forms and Claims

File Medical Reports

<<include>>

Allocate Bed

UWaterloo CS445/ECE451/CS645 Winter 2024

22

Use-Case description

* Describe use cases in a table format.

Name: Order Blood

ID: UC25

Authors: Steve Doe

Goal: Process blood order and payment.

Trigger: Customer submits blood order payment information.
Preconditions: Customer is registered in the system.

Notes:

Main Scenario:

Customer System Blood Database

Credit Card Authorization
System

1. Customer submits
blood order.

2. Checks availability of
blood.

3. Requested Blood is
available.

4. Prompts customer for
Payment type: credit or
invoice.

UWaterloo CS445/ECE451/CS645 Winter 2024

23

More Complex Actions

o |f => Conditional statement
* For => iteration expression
* While => conditional iteration
* Go To UCn
Example:
18. While the ATM checks the account balance

18.1 The ATM displays advertisement.
18.2 The ATM plays background music.

These are not needed very often and maybe a sign that the use case is becoming
too detailed or too much like pseudo-code.

UWaterloo CS445/ECE451/CS645 Winter 2024 24

Scenarios

* Scenario is a one full execution path through a use case, listing only
observable actions of the system and actors.

* A single-use case contains many scenarios

Main Scenario

User ATM
[User inserts ATM card. I I

2. System prompts user for PIN

3. User enters PIN

4. System authenticates user

5. System presents transaction options

6. User chooses to withdraweash | |

7. System presents account options (e.g., checking, _
savings

8.User selectsaccowne {1 |
_ 9. System prompts user for withdrawal amount _
10. User enters amount towithdraw § |
- In.system checks account balancewithBank | |
I .

| 3. System dispenses cash and receipt, and eject ATM _
card

| 4. System performs accounting (visible in other use
cases

I5. User takes ATM card, cash, _
26

receipt

UWaterloo CS445/ECE451/CS645 Winter 2024

Alternative Scenario

* A sub-case that achieves the primary goal of UC through different
sequences of steps/actions

Alternative 1: Customer wants to cancel transaction
Any user step 3-10

Customer ATM

* Customer requests to
cancel withdrawal

*+1 Return ATM card

Alternative 2: Customer wants to perform another transaction
Step 13

13. Customer chooses
option to withdraw cash

Go To Step 7

UWaterloo CS445/ECE451/CS645 Winter 2024 27

Exception

* A sub-case that captures a special case

Exception 1: Bad password
Step 4

Customer ATM

4. ATM detects invalid PIN
Go to Step 2

Exception 2: Cannot connect to Bank
Step 13-15

11. Cannot connect to Bank
12. Display error message and return
ATM card

13. Customer collects ATM
card

UWaterloo CS445/ECE451/CS645 Winter 2024

28

Use case traps to avoid

* ToO many use cases:

 If you are caught in a use case explosion, you might not write them at the
appropriate level of abstraction.

* Do not create a separate use case for every possible scenario.

* Highly complex use cases:

* You cannot control the complexity of the business tasks, but you can control
how you represent them in use cases.

 Select one success path through the use case and call that the main flow. Use
alternative flows for the other logic branches that lead to success, and use
exceptions to handle branches that lead to failure.

* You might have many alternatives, but each one will be short and easy to
understand.

* Including design in the use cases:

» Use cases should focus on what the users need to accomplish with the system’s
help, not how the screens will look.

« Emphasize the conceptual interactions between the actors and the system.

* For example, say “System presents choices” instead of “System displays a drop-down
list.”

* Don’t let the Ul design drive the requirements exploration.

* Including data definitions in the use cases:
 Store data definitions in a project-wide data dictionary and data model

* Use cases that users do not understand:

* |f users cannot relate a use case to their business processes or goals, there is a
problem.

« Write use cases from the user’s perspective, not the system’s point of view,
and ask users to review them.

« Keep the use cases as simple as possible while still achieving clear and
effective communication.

CS445/ECE 451/CS645

Software Requirements
Specifications & Analysis

Use Cases and Scenarios

Requirements

CS445/ECE 451/CS645

Software Requirements Specifications
& Analysis

Domain Model

How are class diagrams, and, indeed, how are all of
UML, used in requirements engineering to help arrive
at a specification of requirements?

Do you remember?

environmental phenomena interface
(domain model) phenomena

data structures,

algorithms
Environment l/]fr;;erface
“The world”

A domain model is a model of the operating environment of our proposed
system

UWaterloo CS445/ECE451/CS645 Winter 2024

Just a quick peek

class Plan /
| d
neure Demogiaphicinfo Address
1 ; [1 1
1...
enrolled in l
Patient Patient
Subscriber g | Dependent
1 0.
| 1
Deductible A RETeI > Plan Payer Provider
1 Out-of-network - 1.* 1 1L:* 1.*
A A
1" PCP
BenefitSet Hospital Physician ThirdParty
association
1.* 0.1
3.7
In-network
Coverage » - Service .
attributes
QOut-of-network
0.1 1 o . .
[from Wikipedia]

UWaterloo CS445/ECE451/CS645 Winter 2024

The object model

 Structural view of the system being modeled (as-is or to-be)
e Roughly, shows how relevant system concepts are structured and interrelated

e Represented by UML class diagram

« “objects”, classes not in the OO design sense: RE is concerned with the problem world only!
« classes with no operations: data encapsulation is a design concern; no design decisions here!

e Multiple uses

« precise definition of system concepts involved in other views, their structure and descriptive properties
« state variables manipulated in other views

e common vocabulary

« basis for generating a glossary of terms

Outline

« What is a conceptual object?
e Entities

« Associations and multiplicities
o Attributes

 Specialization

e Aggregation

« More on class diagrams

o derived attributes, OR associations, associations of associations

« Building object models: heuristic rules

What is a conceptual object?

« Set of instances of a domain-specific concept manipulated by the
modelled system. These instances

e are distinctly identifiable
e can be enumerated in any system state
 share similar features

e common name, definition, type, domain properties,
e common attributes, associations

« may differ in their individual states and state transitions

UWaterloo CS445/ECE451/CS645 Winter 2024 7

Types of conceptual object

1. Agent: active, autonomous object

 instances have individual behavior =
sequence of state transitions for state variables they control
« e.g. Patron, Staff; TrainController, TrainDriver

« represented as UML class (if attributes, associations needed)

2. Entity: autonomous, passive object
« instances may exist in system independently of instances of other objects
« instances cannot control behavior of other objects

* e.g. Book, Journal; Train, Platform

o represented as UML class

UWaterloo CS445/ECE451/CS645 Winter 2024

3. Event: instantaneous object

« instances exist in single system state

« e.g. BookRequest; StartTrain
« represented as UML class (if attributes, associations needed)

4. Association: object dependent on objects it links

« instances are conceptual links among object instances

« e.g. Loan linking Patron and BookCopy

Copy linking BookCopy and Book
At linking Train and Platform

On linking Train and Block
o represented as UML association

Object
// \\ Subtype
Entity Association Agent Event

UWaterloo CS445/ECE451/CS645 Winter 2024

Associations

« Association = conceptual object linking other objects,

each playing specific role
« dependent on objects it links
 linked objects may be entities, associations, events, agents

- -~

Block

On

« Reflexive association = same object appears under different roles

e Arity of association = number of objects linked by it

e In 2 slides

Assocliation instances

« Association instance = tuple of linked object

Instances,
each playing corresponding role
Train isOn holdsTrain Block
On
A
1w -' 18T
InstanceOf.// A i ,'/ \\‘)
L On(tr2 bi1) / R L
SLLOLIS O 1 b|1 b2
""""""""""""""""" On(trl,bl3)

~
S~ -

e—-

UWaterloo CS445/ECE451/CS645 Winter 2024

11

N-ary associations: arity > 2

for a given library and registration per

there may be O up to an unbounded number'

of r'egls’rered patrons

: 0.1

iod,

- agent

Loan (. \Max| BookCopy
! Patron
Borrows BorrowedBy
-------------- Copy
Period Library 1
Book

Registration

h-ary association

UWaterloo CS445/ECE451/CS645 Winter 2024

12

Multiplicities of n-ary association

e From fixed source (n-1)-tuple of currently linked instances: min/max
number of linked target instances
« attached to the role of the target instance

 For binary associations, express standard constraints

« min = 0: optional link (possibly no link in some states)

« min = 1: mandatory link (at least one link to target in any state)
e max = 1: uniqueness (at most one link to target in any state)

e« max = *: arbitrary number N of target instances linked to

source instance, in any state (N >=0)
Notation: “k” for ”k..k”, “KM £or “0. *”

Borrows BorrowedBy

BookCo
Patron 0.1 0 _Max Py

UWaterloo CS445/ECE451/CS645 Winter 2024 13

Entities, associations in UML

Command

a block may hold

association
Driving
1
Train
entity

.......... o O or 1 train
0..1 n 1..2 Block
isOn holds
* At
Platform

0.1

a train may be at

O or 1 platform at most

UWaterloo CS445/ECE451/CS645 Winter 2024

14

Association Qualifiers

« A qualifier is a unique association used at one end of the association to
distinguish among the set of objects at the other end of the association.

o “uniquely identifies.”

(a) Product Contains Product
Catalog 1 1% Description
1 : 1
Product ; Contains Product
(b) Catalog temiD Description
O Q
qualifier k' multiplicity reduced to 1 H

UWaterloo CS445/ECE451/CS645 Winter 2024

Entities, associations, attributes in UML

Command

CommandedSpeed: Speed
CommandedAccel : Acceleration

attribute Driving
. 1 o
In Train 0..1 n 0..1 Block
isOn holdsTrain —
CurrentSpeed: Speed SpeedLimit: Speed
CurrentLoc: Location |« At
DoorsState: {open,...}
Platform
0..1

UWaterloo CS445/ECE451/CS645 Winter 2024

Entities, agents, associations, attributes in UML

attribute of

Patron

Phone [*] : String

Period

Loan association
DateBorrowed: Date
TimeLimit: NumberWeeks
DueReturnDate: Date

0..1 0..Max | BookCopy
Borrows BorrowedBy | CopylD
Copy
Library 1
Book

Regqistration

Keywords [1 .\..*] . Topics

Deposit: Money

DateRegistered: Date

association

attribute of

mul‘riﬁplici’ry

UWaterloo CS445/ECE451/CS645 Winter 2024

17

Built-in associations for structuring object models

o Object specialization/generalization, decomposition/aggregation
« applicable to entities, agents, events, associations

» Specialization = subclassing: object SubOb is a specialization of object SuperOb iff for any
individual o:
InstanceOf (o, SubOb) => InstanceOf (o, SuperOb)

e SubOb specializes SuperOb, SuperOb generalizes SubOb

e amounts to set inclusion on set of current instances
e Feature inheritance as a consequence

« by default, SubOb inherits from SuperOb all its attributes, associations, domain
properties while have its own distinguishing features

« may be inhibited by compatible redefinition of feature with same name within
specialized SubOb (“override”)

Example: Object specialization with inheritance

Driving

1

Command

CommandedSpeed: Speed

CommandedAccel : Acceleration

Train

0..1 On 0..1

CurrentSpeed: Speed
CurrentLoc: Location |« At
DoorsState: {open,...} 1.

isOn holdsTrain

specialisation

inherited features O..1

Semi-rapid

UWaterloo CS445/ECE451/CS645 Winter 2024

Block

SpeedLimit: Speed

Platform

19

TrafficSignal

Color: {green, orange, red}

inheri‘réd _______________ --Location ﬁl
WarningSignal
compatible _..----- -~ Color: {orange}
redefinition
(subsort)

The more specific feature always overrides the more general one.

UWaterloo CS445/ECE451/CS645 Winter 2024

Multiple inheritance

« The Same object may be a specialization of multiple super-objects

« by default, inheritance of all features from all super-objects

e Can result in inheritance conflicts

 different features with the same name inherited from different super-objects
=> conflicting features first renamed to avoid this

Student Patron
renamed “ el - Address Address
StudentAddress StudentID Email
to avoid conflict [% ﬁ

StudentPatron

UWaterloo CS445/ECE451/CS645 Winter 2024

Multiple specializations

« The Same object may have multiple specializations

« Different subsets of object instances associated with different criteria
« Same object instance may be a member of different subsets (one per criterion)

« Discriminator = attribute of super-object whose values define different
specializations (differentiation criterion)

Train
Acceleration discriminating
Doors State - attribute
~ Speed / KCapacity
SemiRapid|| Rapid ShortTrain | [LongTrain

UWaterloo CS445/ECE451/CS645 Winter 2024

Object generalization

Loan _features inherited by

DateBorrowed: Date ._}---" all specializations

TimeLimit: NumberWeeks| —_.-~~ /

. ! ”’ I

registeredAt Patron 0.1 : -7 Borrowableltem |/

- e - I -~ 0..Max d
one [*]: String CopyID .’
Email: Prefix x Suffix| 5OV BorrowedBy | 5 teEntered ~

multiple _..__-————---f \ / f \ '\.\.
. . \ \
inheritance), _|StudentPatron| | StaffPatron BookCopy | |JournalCopy| | ProceedingsCopy .‘
... Department ResearchAccount !
ProcOf !
Student | Copy :
StudentlD Book Journal Conference '5
YearOfStudy Author Issue ConfSeries K

generalization is
not necessarily apparent

UWaterloo CS445/ECE451/CS645 WllrQeP{(')gPlem Wor'ld 23

Object aggregation/composition

« Aggregation: an object may belong weakly to several containers
« A has an aggregation relationship with B and C if they are parts of A

« Composition: an object may strongly be a part of at most one container

« Strong form of aggregation
e Parts only belong to one whole
 If the whole is deleted, parts get deleted

e Fuzzy distinctions between
e Aggregation
e Composition
e Association

UWaterloo CS445/ECE451/CS645 Winter 2024

24

Examples of aggregation and composition

aggregation

0.* |sub-team
0.7 1.7
Team (> Employee
0.1
1
builds
1.7
~ 1.7 * cub-
Airplane -01 Component 0.7 sub
assembly
D..*T
assembly

UWaterloo CS445/ECE451/CS645 Winter 2024

N

Tips:
You Should Be Interested In Both The Whole And The Part
Depict the Whole to the Left of the Part

Apply Composition to Aggregates of Physical [tems

Apply Composition When the Parts Share The Persistence Lifecycle With
the Whole

Don't Worry About Getting the Diamonds Right ©

More on UML class diagrams

e Ordered association: multiple target instances from the source instance (or
tuple of instances) are ordered.

Library
¢
1] [1.* 0.1
Directory Shelve AntiTheft
0..1
(ordered) * Content
BookCopy
CopyID

UWaterloo CS445/ECE451/CS645 Winter 2024 27

More on UML class diagrams

e OR association = same role played by alternative objects

« set of object instances in this role =
union of alternative sets of object instances

OR-association MasterOf | Book
Borrowableltem |. _>—Fgpy
CopyID : Co 0. 1
Date Entered & Journal
MasterOf

UWaterloo CS445/ECE451/CS645 Winter 2024 28

More on UML class diagrams

« Association of associations: one of the linked objects is an association

Concert

Season

1 Hall

Performance

Date

1.7

1..”

Seat

Seat#

Reservation

Reserv#
ReservDate

UWaterloo CS445/ECE451/CS645 Winter 2024

29

By default, every object has its own copy of attributes, and may have its own
attribute values.

A class-scope attribute is an attribute whose value is changeable, but is shared
by all of the class’s object instances. Thus, all objects will have the same class-

scope attribute value.
Syntax: underlined attribute declaration

Library 1 borrows * Publication
Member loan period: Duration

Léan
due date

UWaterloo CS445/ECE451/CS645 Winter 2024 30

Building object models: heuristic rules

e Deriving pertinent and complete object models from goal models
 deriving objects, associations, attributes

e From goal model to object model
e Object or attribute?
e Entity, association, agent, or event?

e Bad smells

31

Object or attribute ?

For X: conceptual item in goal specs, make X an attribute if

« X is a function: yielding one single value (possibly structured) when applied to
conceptual instance

« instances of X need not be distinguished

« you don’t want to attach attributes/associations to X, specialize it, or aggregate/
decompose it

e its range is not a concept you want to specialize or attach attributes/associations

Writin
Book Author g Book

Vs. _
Authors: String Birthdate

T

| |
MainAuthor Co-Author

Entity, association, agent, or event ?

For X: conceptual object in goal specs

« instances of X are defined in one single state

= event e.g. StartTrain
e instances of X are active: control behaviors of other object instances

= agent e.g. DoorsActuator
e instances of X are passive, autonomous

= entity e.g. [rain

e instances of X are passive, dependent on other, linked object instances

=> association e.g. Following (Train, Train)
N-ary if each of the N parties ...
-need be considered as objects
- yields tuples to be distinguished

UWaterloo CS445/ECE451/CS645 Winter 2024

33

Building object models: bad smells

Distinct classes:
‘ Door 1 Elevator Car L Engine \

Single class:

Elevator
door: {open, closed, opening, closing}

engine: iue, down, standbzz

UWaterloo CS445/ECE451/CS645 Winter 2024

34

Building object models: bad smells

Address

T

House

Province city 1 1
name

City street |1 1| Street house |1 1
name number

UWaterloo CS445/ECE451/CS645 Winter 2024

35

Building object models: bad smells

‘ i 1 borrows * \
nlﬁ:eb';abrgr : Publication

Ldan
due date

Loan
. | loan number *

loan date

Library
Member

due date
return date

UWaterloo CS445/ECE451/CS645 Winter 2024

Publication \

36

Building object models: bad smells

Avoid “pointers” to other objects as attributes

e use binary associations instead

\

Borrower
Loan: Boo
/ l
Loan

Borrower

BAD
BookCopy
\\
GOOD
BookCopy

UWaterloo CS445/ECE451/CS645 Winter 2024

37

Building object models: bad smells g

Avoid non-structural links pertaining to other views

« monitoring/control links from agent model (context diagram)

S~

—— . — BAD
TrainConmw Train
/ -
L
Trackingsm;—g% Train o
/ -
e
BAD GOOD
setsDateRange
Ini / Initiator | n'tating Meeti
Meeting oy
DateRange
Date
}eh'mer setsDate Scheduler/

UWaterloo CS445/ECE451/CS645 Winter 2024

Scheduling

38

Building object models: bad smells g

Avoid non-structural links pertaining to other views

« dynamic links from behavior model (state diagram)

\

e
BorrowerRequest

/
\

GoSignaI\

Generates

Activates

Loan

Train

/

>
rd

UWaterloo CS445/ECE451/CS645 Winter 2024

39

Building object models: bad smells

Avoid obscure names for objects & attributes
 suggestive shortcut of their annotated definition
e don’t forget precise definition!
* don’t confuse terms ! e.g. Book vs. BookCopy
e from problem world, NOT implementation-oriented

- Bad JPEG File, Book File
* Good Picture , Directory
 specific, NOT vague
« Bad Person, Form
* Good Patron, RegistrationForm
« commonly used, NOT invented
« Bad PersonalldentificationCard, ConferenceBook
* Good StudentCard, Proceedings

UWaterloo CS445/ECE451/CS645 Winter 2024

40

| Rental Car Company |

owns

1.7

Vehicle
manuf

rented car

l Utility Class |

Rental Agreement
start : Date customer

Date

today : Date

= (d : Date) : boolean
< (d : Date) : boolean

- Sd : Datez - Duration

Person

firsthame : string

model
colour
VIN

1

end : Date

* L 1

price : Money
discount : Percentage

UWaterloo CS445/ECE451/CS645 Winter 2024

lasthame : string

age : integer

41

Domain Model should have

 Attributes and their types

« Multiplicities on all associations (including “1” multiplicities)

« Association names, or role names, for all non-trivial associations
« Qualifiers to simplify multiplicities in associations

« Actors showed as stick figures or as classes with «actor» stereotype

 This requires you to show multiplicities between actors and classes, which
can be a valuable requirement detail.

UWaterloo CS445/ECE451/CS645 Winter 2024 42

Domain Model should NOT have...

e Class-level operations or methods
e Visibility annotations (i.e., private, protected, public)
« Navigability arrows

e Initial attribute values (unless you need them for model
correctness)

« Object construction and destruction functions

UWaterloo CS445/ECE451/CS645 Winter 2024

43

Behave! Watch your language

e The goal is to create a conceptual model:

« Models of real-world entities (customers, accounts, bills) and not of
system entities (databases, SW components)

« Focus on the information/artifacts that the system will input,
transform, analyze, display, etc.; physical and conceptual

UWaterloo CS445/ECE451/CS645 Winter 2024

44

Requirements

CS445/ECE 451/CS645

Software Requirements Specifications
& Analysis

Domain Model

CS445/ECE 451/CS645

Software Requirements Specifications
& Analysis

Requirements Engineering
Reference Model

Overview

Goal: A clear understanding of what requirements are, what specifications are,
and what the relationship between them is.

Requirements, specifications, and progsams

Hard reality Sh
(domain model) . phe

= Environment

o

ata structures
and algorithms

System (SUD)

<} " Interface

\
\

"The world”

UWaterloo CS445/ECE451/CS645 Winter 2024

A system can be a socio-technical
artifact to be constructed; it can be
composed of some mix of software
and hardware, humans and
processes.

We scope the Environment to
include only those aspects of the
real world that are relevant to the
particular problem at hand.

The generalized environment is
sometimes called the application
domain.

A domain modelis a diagram that
shows how domain entities are
related to each other. (I will talk
about it later)

Hard reality
(domain model)

Shared
phenomena

Environment

o

—~®

e

Interface

.-/---

“The world”

UWaterloo CS445/ECE451/CS645 Winter 2024

Data structures
and algorithms

System (SUD)

e Shared Phenomena are visible to

both the Environment and the Hard reality Shared Data structures
System and form the Interface (domain mode!) phenomena and algorithms
between the two. svironment e SRS

* Interface serves as a .\/:.i‘:‘/,,,/ Interface
communication bridge between the /

environment and the system.

“The world”

UWaterloo CS445/ECE451/CS645 Winter 2024 5

Requirements World

* Are desired changes to the World.
* Are expressed in terms of environmental
phenomena.
* Are statements of desired properties:
* Often high level
* May need to be elaborated, organized,
analyzed
* Heard during elicitation

Requirements

UWaterloo CS445/ECE451/CS645 Winter 2024 6

Specification

* |s a description of the proposed
system.

* Should describe what the system
Is supposed to do, without
indicating how the system will be
realized.

Specification

Scoping the environment

* [t is a subset of the world World
* Want to model only as much of

the world as is necessary to
express the requirements and

the specification

Requirements Specification

UWaterloo CS445/ECE451/CS645 Winter 2024

Example

Suppose that the city of Waterloo decides to raise funds by instituting users
fees for public parks.

Requirements: %
R1: Collect S1 fee from each user on entry to the park.

R2: Ensure that anyone who has paid may enter the park.
R3: Ensure that no one may enter the park without paying.

Solutions: Human fee collectors vs. turnstiles with automated coin collection.

Turnstile Example

Collect S1 fee from each user Coin slot (Env) coin inserted into slot

on entry to the park (Sys) senses coin

Ensure that anyone who has Barrier (Sys) unlocks barrier upon sensing a new coin

paid may enter the park (Env) visitor can detect that barrier is unlocked,
can push barrier

Ensure that no one may Barrier (Sys) detects entry

enter the park without (Sys) relocks barrier

paying.

UWaterloo CS445/ECE451/CS645 Winter 2024 10

Domain Knowledge

* |deally, we want to be able to show that the specifications imply the
requirements:

Spec = Req

e Often, we cannot do so without making some assumptions about how the
environment behaves.

Dom & Env

* Domain Knowledge is thus the set of properties that we know (or assume) to
be true of the Environment that is relevant to the problem.

UWaterloo CS445/ECE451/CS645 Winter 2024 11

* An assumption is a statement that is believed to be true in
the absence of proof or definitive knowledge.

* Business assumptions are specifically related to the
business requirements. Incorrect assumptions can
potentially keep you from meeting your business
objectives.

RE Reference Model

The fundamental law of requirements:

Dom, Spec |= Req

Must be able to argue that the specification of the system plus the
assumptions are enough to satisfy the requirements.

UWaterloo CS445/ECE451/CS645 Winter 2024

13

Deriving Specifications

For each requirement (Req)
e Determine how the system will monitor/control the environment

* Determine whether Req constrains environmentally-controlled phenomena
(if so, identify domain assumptions (Dom))

e Check that Dom, Spec = Reg

Example: Traffic Light

R: Allow car traffic to cross an intersection safely, without colliding with traffic
travelling in other directions.

D: drivers behave legally and cars function correctly

S: spec of traffic light that guarantees that perpendicular directions do not
show green/yellow at the same time.

UWaterloo CS445/ECE451/CS645 Winter 2024 15

Correctness

* To evaluate a specification, you must be able to argue that the SUD spec plus

the domain assumptions are enough to satisfy the requirements. pom, Spec F
Req

* What do you need to do if you couldn’t make this argument successfully?

. Allow car Traffic To cross an intersection safely wi
traffic travelling in other directions.

D: drivers behave legally, and cars function correctly

S: spec of a ’rmffi; Ii%h’r that guarantees that perpendicular directions
ye

do not show green ow simultaneously.

UWaterloo CS445/ECE451/CS645 Winter 2024 16

Uncertainty in D, S |: R

* D, S E R tries to describe what happens ultimately formally.

* One would expect computers and software and their combination to be
formal in this sense.

* But, the real world intervenes to make this formula a guideline, not an
accurate, precise model.

RE Reference Model

The fundamental law of requirements:

Dom, Spec |= Req

Must be able to argue that the specification of the system plus the
assumptions are enough to satisfy the requirements.

UWaterloo CS445/ECE451/CS645 Winter 2024

18

CS445/ECE 451/CS645

Software Requirements Specifications
& Analysis

Requirements Engineering
Reference Model

CS445/ECE 451/CS645

Software Requirements Specifications & Analysis

Elicitation
To elicit means “to bring out, to evoke, to call forth”

snemeey (s | || (o, | B[e
BEFORE T START TO TRYING 1O B L Ky ACCOMPLISH WITH

| MY SOFTWARE

. DESIGN THE SOFTLUARE, J . \ THE SOFTLIARE?
>] s i
] -

! Iy |

\

- 17 myToseT THIS) -
T WA0NE KNG LHAT CAN YOU DESIGN

N ACCOM| CONCEPT THROUGH YOUR
g‘m?n You n’LLLI?\‘g THICK SKULL" THE IT TO TELL YOU
SOFTWARE CAN DO | MY REQUIREMENTS? |

WHAT THE SOFTLIARE
CAN DO,

—_—

). WHATEVER 1 DESIGN
\ IT T0 DO!

§o

© Scoftt Adams, Inc/Dist. by UFS, Inc.

U Waterloo CS445/ECE451/CS645 Winter 2024 1

Purpose

The purpose of elicitation is to get information about:
* Current work and current problems

* The requirements of the system
* The environment in which the system will operate

In order to:
* identify relevant requirement sources
* elicit existing requirements from the identified sources
* develop new and innovative requirements

The expectation gap

- 3 Expectation ™\
gap with
customer
engagement Expectation
gap without
customer
engagement
J

rrr

Customer contact points

Time

U Waterloo CS445/ECE451/CS645 Winter 2024

Who is a stakeholder?

A stakeholder is a person, group, or organization actively
involved in a project, is affected by its process or outcome,
or can influence its process or outcome. Stakeholders can be

internal or external to the project team and the developing

organization.

U Waterloo CS445/ECE451/CS645 Winter 2024 4

Outside the Developing Organization

Direct user Business management
Indirect user Contracting officer
Acquirer Government agency
Procurement staff Subject matter expert
Legal staff Program manager
Contractor Beta tester
Subcontractor General public

Consultant
Compliance auditor
Certifier

Regulatory body
Software supplier
Materials supplier
Venture capitalist

Developing Organization

Company owner Subject matter expert

Development manager Sales staff Executive sponsor
Marketing Installer Project management office
Operational support staff Maintainer Manufacturing

Legal staff Program manager Training staff

Information architect Usability expert Portfolio architect

Project Team

Project manager
Business analyst
Application architect
Designer

Developer

Product owner

Data modeler
Process analyst

Tester

Product manager

Quality assurance staff
Documentation writer
Database administrator
Hardware engineer
Infrastructure analyst
Business solutions architect

Infrastructure support staff

Who is the customer?

Customers are a subset of stakeholders. A customer is an individual or
organization that derives either direct or indirect benefits from a product.
Software customers could request, pay for, select, specify, use, or receive the

output generated by a software product.

U Waterloo CS445/ECE451/CS645 Winter 2024 6

The customer-development partnership

* An excellent software product: a well-executed design based on excellent requirements.
* Excellent requirements: effective collaboration between developers and customers.

* A collaborative effort: all parties involved know what they need to be successful and when
they understand what their collaborators need to be successful.

* As project pressures rise, it’s easy to forget that all stakeholders share a common
objective: to build a product that provides adequate business value and rewards to all
stakeholders.

* The business analyst typically is the point person who has to forge(form/make) this
collaborative partnership.

Requirements Bill of Responsibilities for BA

You have the responsibility to

. speak customer language.

. learn about customer’s business and their objectives.

. record requirements in an appropriate form.

. provide explanations of requirements, practices and deliverables.

. accept change of requirements.

. maintain an environment of mutual respect.

. provide ideas and alternatives for customers’ requirements and their solutions.
. describe characteristics that will make the product easy to use.

O 00 N O U1 A W DN -

. provide ways to adjust requirements to accelerate development through reuse.

10. provide a system that meets customers’ functional needs and quality
expectations.

The business analyst role

Project Sponsor Project Management

business

) size and complexity
requirements

information,
requirements status

user
requirements

User Representatives |« < »| Development

functional and
nonfunctional
requirements

Business
Analyst

expectations

and constraints _
functional and

nonfunctional :
Other Stakeholders requirements Testing

The business analyst bridges communication between customer and development stakeholders.

U Waterloo CS445/ECE451/CS645 Winter 2024

The business analyst’s tasks

* Define business requirements.

* Plan the requirements approach.
* |dentify project stakeholders and user classes.
* Elicit requirements.

* Analyze requirements.

* Document requirements.

* Communicate requirements.

* Lead requirements validation.

* Facilitate requirements prioritization.
* Manage requirements.

O 0NV AEWNRE

O T =
> whNh e o

Essential analyst skills

Listening skills
Interviewing and questioning skills.
Thinking on your feet.
Analytical skills.
Systems thinking skills.
Learning skills.
Facilitation skills.
Leadership skills.
Observational skills.
Communication skills.
Organizational skills.
Modeling skills.
Interpersonal skills.
Creativity

The cyclic nature of requirements elicitation, analysis,
and specification.

Elicitation

Analysis

Specification

U Waterloo CS445/ECE451/CS645 Winter 2024

15

Activities for a single requirements elicitation session.

Prepare Perform Follow up
for elicitation after
elicitation activities elicitation
AL AL AL
4 N N N\
Decide on Prepare
elicitation Prepare uestions and Perform Organize and Document
—p P — 9 —»| elicitation P g — .
scope and resources straw man . share notes open issues
session
agenda models

Before we walk through this process, though, let’s explore some of the requirements
elicitation techniques you might find valuable.

U Waterloo CS445/ECE451/CS645 Winter 2024 16

0 NO U WD PE

Requirements elicitation techniques

Interview

Workshop

Focus Groups
Observations
Questionnaires

System Interface Analysis
User Interface Analysis
Document Analysis

Requirements elicitation techniques

. Interview (The most obvious way to find out what the
users of a software system need is to ask them):

* Establish rapport (a close and harmonious relationship)

* Stay in scope

* Prepare questions (closed and opened)

e Suggest ideas

* Listen actively

* Summing up

* Follow up

2. Workshop (Workshops encourage stakeholder
collaboration in defining requirements):

* Establish and enforce ground rules

* Fill all of the team roles

* Plan an agenda

* Stay in scope

* Timebox discussions

* Keep the team small but include the right stakeholders

* Keep everyone engaged

3. Focus groups:

* A focus group is a representative group of users who convene in a
facilitated elicitation activity to generate input and ideas on a focused
product’s functional and quality requirements.

* Focus group sessions must be interactive, allowing all users to voice their
thoughts.

* Focus groups help explore users’ attitudes, impressions, preferences, and
needs

4. Observations:

* When you ask users to describe how they do their jobs, they will likely
have a hard time being precise; details might be missing or incorrect

* Observations are time-consuming.
e Observations can be silent or interactive.

. Questionnaires:
* To survey large groups of users/stakeholders to understand their needs.

* They are inexpensive, making them a logical choice for eliciting
information from large user populations, and they can be administered

easily across geographical boundaries.

* The analyzed results of questionnaires can be used as input for other

elicitation techniques.

* You can also use questionnaires to survey commercial product users for

feedback.

* Preparing well-written questions (answer options) is the biggest
challenge with questionnaires:
e complete the set of possible responses.
* mutually exclusive and exhaustive.
e don’t imply a “correct” answer.
* consistent with scales.
* open-ended questions vs. closed questions.

6. System interface analysis:

* Reveals functional requirements regarding the exchange of data and services
between systems.

* For each system that interfaces with yours, identify functionality in the other
system that might lead to requirements for your system.

7. User interface analysis:

* To study existing systems to discover user and functional requirements.

e Can help you identify a complete list of screens to help you discover
potential features.

* It’s a great way to get up to speed on how an existing system works
(unless you need much training).

* Instead of asking users how they interact with the system and what steps
they take, perhaps you can reach an initial understanding yourself.

8. Document analysis:

* The most helpful documentation includes requirements specifications,
business processes, lessons learned collections and user manuals for existing
or similar applications.

* Documents can describe corporate or industry standards that must be
followed or regulations with which the product must comply.

* Comparative reviews point out shortcomings in other products that you
could address to gain a competitive advantage.

* Problem reports and enhancement requests collected from users by the help
desk and field support personnel can offer ideas for improving the system in
future releases.

How do you know when you’re done?

* Can’t think of any more use cases or user stories.

e Users propose new scenarios but don’t lead to any new functional
requirements.

* Users repeat issues they already covered in previous discussions.

* Suggested new features, user requirements, or functional requirements are
all deemed to be out of scope.

* Proposed new requirements are all low priority.

* The users are proposing capabilities that might be included “sometime in the
product’s lifetime” rather than “in the specific product we’re talking about
right now.”

* Developers and testers who review the requirements for an area raise a few
guestions.

CS445/ECE 451/CS645

Software Requirements Specifications & Analysis

Elicitation
To elicit means “to bring out, to evoke, to call forth”

snemeey (s | || (o, | B[e
BEFORE T START TO TRYING 1O B L Ky ACCOMPLISH WITH

| MY SOFTWARE

. DESIGN THE SOFTLUARE, J . \ THE SOFTLIARE?
>] s i
] -

! Iy |

\

- 17 myToseT THIS) -
T WA0NE KNG LHAT CAN YOU DESIGN

N ACCOM| CONCEPT THROUGH YOUR
g‘m?n You n’LLLI?\‘g THICK SKULL" THE IT TO TELL YOU
SOFTWARE CAN DO | MY REQUIREMENTS? |

WHAT THE SOFTLIARE
CAN DO,

—_—

). WHATEVER 1 DESIGN
\ IT T0 DO!

§o

© Scoftt Adams, Inc/Dist. by UFS, Inc.

U Waterloo CS445/ECE451/CS645 Winter 2024 27

CS 445 / ECE 451 / CS 645

Software Requirements Specifications & Analysis

Introduction

Grad Student

* Who is taking this as CS 645: Please send the instructor an
e-mail during January!

* You will be required to do a 20-30 minute lecture and a
written report on a topic related to the course material
* | am very open to possible topics
* It’s worth 10% of your final grade

 INOTE TO ALL] Grad lecture material can be on the exam!

U Waterloo CS445/ECE451/CS645 Winter 2024

ooucr LE o s {“RESOURCES cowrors

CONTROL #5rdacw “BJ&K “svsiER PLANN'NG ey

Course project KWERCJE@LS QZZCS?%

oiscl

) METHODOLOGY

* To be done in groups of 5, self-chosen L AU
. : “TRESPROJECTS puvANAYDS e
* You will all get the same project grades -
* unless your partners think you’'re

* By 6 am on Tuesday, January 16, each team must e-mail the
instructor with

* Member names
* Project name
* Project description.

U Waterloo CS445/ECE451/CS645 Winter 2024 3

Course project — cont.

* Doing so will allow you to apply the requirements
engineering principles and techniques discussed in lectures
to the problems of eliciting, documenting, and validating the
specification of a non-trivial software system.

Working in groups

* Don’t just pick your friends

* Consider:
* work habits
* goals
* good organization skills for project coordination
* good writing skills

* |deally:
* Equitably distribute the workload
* Minimize resentment

U Waterloo CS445/ECE451/CS645 Winter 2024 5

* The purpose of working in groups is to get you used to work
In groups

* Working in groups is a crucial skill for success in the industry.

* It’s also tough to teach or lecture about, so we try to ensure that
you have some exciting experiences.

* Your project is not a collection of little independent tasks;
instead, there will be several work stages for each
deliverable:

* Discuss and allocate tasks to group members

* Work on tasks (alone or not)

* Distribute draft solutions

* Meet to discuss drafts, evaluate, iterate, and plan
* Revise, evaluate, iterate

e Stitch together final draft and submit

* Specifying something real is much more interesting than a
mocked-up example.

* Your group will be assigned a TA, who will serve as your
customer and will grade all of your submissions

* And thus, you’ll get some consistency in marking too

* Your job:
* to create detailed models of the various entities and processes,
* to decide what features should be there,
* to decide the correct functionality of these features,

* eventually, use these models and decisions to create an SRS
describing your software,

* You should be thinking of these as you progress through the
project.

* In other words, you will have to modernize the system

Master the basics

* You will participate in brainstorming meetings to identify
requirements.

* Your group will decide on a consistent set of requirements
and then model and specify a system with these
requirements in the form of an SRS.

Notes

 The final deliverable is an SRS

* You will be expected to be serious, creative, and consider
the project as a real case.

* Remember that you don’t have to implement them.

Important notes when emailing us:

* Number questions and have only one question per number.

* Do not draw and scan deliverables. Using a tool is part of the
difficulties of software engineering.

* |[dentify yourself (the group name) both on the e-mail (either
subject or body, or both)

U Waterloo CS445/ECE451/CS645 Winter 2024 12

Sources for all lectures

* Previous offering of course notes

* Fowler, UML Distilled, Addison-Wesley, 2004, 3rd edition. (available electronically at
the DC library)

 Jackson, Software Requirements and Specification, ACM Press, 1995.
* Gause and Weinberg, Exploring Requirements, Dorset House, 1989.

* Van Lamsweerde, Requirements Engineering: From Systems Goals to UML Models to
Software Specification, Wiley, 20009.

* Lauesen, Software Requirements: Styles and Techniques, Addison-Wesley, 2002.

. ggggrtson and Robertson, Mastering the Requirements Process, 2nd ed., Wiley,

e Klaus Pohl . Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer, 2010.

e Karl Wiegers and Joy Beatty, Software Requirements, Third Edition.

U Waterloo CS445/ECE451/CS645 Winter 2024

14

What is “Requirement” ?

Requirement:

1. A condition or capability needed by a user to solve a problem or
achieve an objective.

2. A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, or other
formally imposed documents.

3. A documented representation of a condition or capability as in (1)
or (2).

[IEEE 610.12-1990 standard]

U Waterloo CS445/ECE451/CS645 Winter 2024 15

What is “requirement”? Cont.

[Requirements encompass both the user’s view of the external
system behavior and the developer’s view of some internal
characteristics. They include both the behavior of the system
under specific conditions and those properties that make the
system suitable—and maybe even enjoyable—for use by its
intended operators.]

lan Sommerville and Pete Sawyer (1997)

U Waterloo CS445/ECE451/CS645 Winter 2024 16

What is “requirement”? Cont.

“Requirements are a specification of what should be
implemented. They are descriptions of how the system should
behave or of a system property or attribute. They may be a
constraint on the development process of the system.”

Wiegers Karl E. And Beatty Joy

Software Requirements (Developer Best Practices)

U Waterloo CS445/ECE451/CS645 Winter 2024 17

Levels and types of requirements

U Waterloo CS445/ECE451/CS645 Winter 2024

18

Term

Business requirement

Business rule

Constraint

External interface requirement

Feature

Functional requirement

Nonfunctional requirement

Quality attribute

System requirement

User requirement

Definition

A high-level business objective of the organization that builds a product or of a
customer who procures it.

A policy, guideline, standard, or regulation that defines or constrains some aspect
of the business. Not a software requirement in itself, but the origin of several
types of software requirements.

A restriction that is imposed on the choices available to the developer for the
design and construction of a product.

A description of a connection between a software system and a user, another
software system, or a hardware device.

One or more logically related system capabilities that provide value to a user and
are described by a set of functional requirements.

A description of a behavior that a system will exhibit under specific conditions.

A description of a property or characteristic that a system must exhibit or a
constraint that it must respect.

A kind of nonfunctional requirement that describes a service or performance
characteristic of a product.

A top-level requirement for a product that contains multiple subsystems, which
could be all software or software and hardware.

A goal or task that specific classes of users must be able to perform with a system,
or a desired product attribute.

19

Business

Business
Requirements Rules
\ L N
’ / E

- {1 Vision and Scope Document | = = = € = = = 4 = = = - _\\ ____________
\ 7/ ! \
\ % /
<4 o ’ _
User .’ / Quality
5 / -
@qwrem@ , Attributes

/
\ !
/ ’

— = = =| User Requirements Document |- 7/ Y
7’
N R External
« . Interfaces
7’
-

Functional

Requirements Requirements

Software Requirements Specification

Relationships among several types of requirements information. Solid arrows mean “are stored in”;
dotted arrows mean “are the origin of” or “influence.”

rap:

Don’t assume that all your project stakeholders share a

common notion of what requirements are. Establish
definitions up front so that you’re all talking about the same

things.

)
What is Requirements engineering?

oy

* To make sure that a software solution correctly solves a mj
particular problem, we must first correctly understand and
define what problem needs to be solved.

* Figuring out what is the right problem is can be surprisingly
difficult.
* What problem should be solved
* Why such a problem needs to be solved

* Who should be involved in the responsibility of solving that
problem

U Waterloo CS445/ECE451/CS645 Winter 2024 22

System-as-is
.+~ Problems, "\,\
i opportunities, 1
. domain knowledge .~

~ -

'''''
.........

System-to-be

assumptions

Satisfy

Services,
constraints,

Software-to-be

Persons

Devices

Assigned to

Existing software

-

_/

. '
Environment

WHY ?

WHAT ?

WHO ?

Why Software Fails...

* We waste billions of dollars each year on entirely preventable
mistakes.

* Most IT experts agree that such failures occur far more often than
they should.

* The failures are universal: they happen in every country; to large
companies and small; in commercial, nonprofit, and governmental
organizations; and without regard to status or reputation.

* The business and societal costs of these failures--in terms of the
wasted taxpayer and shareholder dollars and investments that
can't be made--are now well into the billions of dollars a year.

Why do projects fail so often?

e Unrealistic or unarticulated project goals

* Inaccurate estimates of needed resources
* Badly defined system requirements

* Poor reporting of the project's status

* Unmanaged risks

* Poor communication among customers, developers, and users
* Use of immature technology

* Inability to handle the project's complexity
* Sloppy development practices

* Poor project management

 Stakeholder politics

 Commercial pressures

U Waterloo CS445/ECE451/CS645 Winter 2024

Top software failures

Real life examples of software development failures

12 famous ERP disasters, dustups and disappointments

10 Biggest Software Bugs and Tech Fails of 2021

11 of the most costly software errors in history

U Waterloo CS445/ECE451/CS645 Winter 2024

26

https://www.tricentis.com/blog/real-life-examples-of-software-development-failures?utm_source=google&utm_medium=paidsearch&utm_campaign=Blog_Search_DSA_High_AMS_EN&utm_term=&gclid=EAIaIQobChMIyIiVzbfZ-wIVRMCGCh2_uAA6EAAYASAAEgLHxPD_BwE
https://www.cio.com/article/278677/enterprise-resource-planning-10-famous-erp-disasters-dustups-and-disappointments.html
https://www.testdevlab.com/blog/10-biggest-software-bugs-and-tech-fails-of-2021
https://raygun.com/blog/costly-software-errors-history/

Requirements Engineering, roughly...

* Analyze problems with an existing system (system-as-is)
* |[dentify objectives & opportunities for new system (system-to-be)

* Define functionalities of, constraints on, responsibilities in system-
to-be,

* Specify all of these in a requirements document

System = software + environment

U Waterloo CS445/ECE451/CS645 Winter 2024 27

Requirements in the software lifecycle

U Waterloo CS445/ECE451/CS645 Winter 2024

28

Call for tenders,
proposal evaluation

Project estimations
(size, cost, schedules) \ / Follow-up directives

Software prototype, < - Requirements Software architecture
7
mockup Document

Project contract Project workplan

Acceptance test data / \/ \ Softv!jare evolution
irectives
Quality Assurance Implementation :
checklists F()jirectives User manual Software documentation

Impacts on

Waterfall

Waterfall

Incremental
Evolutionary

“Classic” or agile style

Requirements

Requirements
Elicitation

Requirements
Analysis

Requirements

Requirements
Specification

Requirements
Validation

The Requirements Engineering
Model

The General Software
Engineering Framework

U Waterloo CS445/ECE451/CS645 Winter 2024

30

Agile

Elicitation & analysis Prioritization Specification Validation
Feasibility

study Interviews Use-cases User stories Review meetings
: Business value .] .
Observation Focus groups Minimal documentation Prototyping

DEVELOPMENTTEAM

CUSTOMER

U Waterloo CS445/ECE451/CS645 Winter 2024 31

RE: Waterfall vs. Agile

5) Releasg

Development

v
‘0

L
“eloa

Continuous cycles

Small, high-functioning, collaborative teams
Multiple methodologies
Flexible/continuous evolution

Customer involvement

Waterfall

Design

Implementation

Verification

Maintenance

Sequential/linear stages

Upfront planning and in-depth documentation
Contract negotiation

Best for simple, unchanging projects

Close project manager involvement

Source: officialconsumerreport.com

U Waterloo CS445/ECE451/CS645 Winter 2024

32

U Waterloo CS445/ECE451/CS645 Winter 2024

U Waterloo CS445/ECE451/CS645 Winter 2024

U Waterloo CS445/ECE451/CS645 Winter 2024

U Waterloo CS445/ECE451/CS645 Winter 2024

U Waterloo CS445/ECE451/CS645 Winter 2024

Why RE is hard?

* Broad scope

* Multiple concerns

* Multiple abstraction levels
* Multiple stakeholders

* Additional activities during the process

U Waterloo CS445/ECE451/CS645 Winter 2024

38

Why RE is important

* Legal impact

* Social impact

* Technical impact

* Impact on certification

* Impact on economy, security, and safety

U Waterloo CS445/ECE451/CS645 Winter 2024 39

Requirements error are the most dangerous software
errors

1. IranAir A300 Airbus was shot by US Vincennes in July 1988

2. First version of London ambulance dispatching system, with two
tragic failures of the system (Oct-Nov 1992)

3. The Crash of an American Airlines Boeing 757 in Cali on Dec 1995
4. New York subway crash on June 1995 Nz
5. Ariane 5 Rocket failure

U Waterloo CS445/ECE451/CS645 Winter 2024 40

Statistics from NIST Report

* NIST (National Institute of Standards and Technology) has published
a report on project statistics and experiences based on data from a
large number of software projects?

* 70% of the defects are introduced in the specification phase
* 30% are introduced later in the technical solution process

* Only 5% of the specification inadequacies are corrected in the specification
phase

* 95% are detected later in the project or after delivery where the cost for
correction on average is 22 times higher compared to a correction directly
during the specification effort

* The NIST report concludes that extensive testing is essential, however

testing detects the dominating specification errors late in the process

[1] http://www.nist.gov/public_affairs/releases/n02-10.htm (May 2002)
U Waterloo CS445/ECE451/CS645 Winter 2024 41

Requirements Engineering Activities

Requirements Engineering

Requirements Requirements Requirements
Inception Development Management

Elicitation Analysis Specification

U Waterloo CS445/ECE451/CS645 Winter 2024

Verification

42

Functional vs. Non-functional requirements

* A functional requirement is a requirement defining functions
of the system under development

* Describes what the system should do

* A non-functional requirement is a requirement that is not
functional. This includes many different kinds of

requirements.

U Waterloo CS445/ECE451/CS645 Winter 2024 43

Functional Requirements

 What inputs should the system accept
* What outputs should the system produce
* What data should the system store other systems might use

* What computations should the system perform
* The timing and synchronization of the above

* Depend on the type of software, expected users, and the
type of system where the software is used

U Waterloo CS445/ECE451/CS645 Winter 2024 44

Non-Functional Requirements (NFR)

* Non-functional requirements are important
* If they are not met, the system is useless

* Non-functional requirements may be challenging to state precisely
(especially at the beginning), and imprecise requirements may be
difficult to verify

* They are sometimes called quality requirements, quality of
service, or extra-functional requirements.

e Will talk about them in detail later on in the term!

U Waterloo CS445/ECE451/CS645 Winter 2024 45

~

Errors in a requirements document (ro)

* Omission: problem world feature not stated by any RD item
e.g. no requirements about the state of train doors in case of an emergency stop

* Contradiction: RD items stating a problem world feature in an incompatible way

“Doors must always be kept closed between platforms.”
and “Doors must be opened in case of an emergency stop”

* Inadequacy: RD item not adequately stating a problem world feature

“Panels inside trains shall display all flights served at the next stop.”

* Ambiguity: RD item allowing a problem world feature to be interpreted in different ways
“Doors shall be open as soon as the train is stopped at the platform.”

* Un-measurability: RD item stating a problem world feature in a way precluding option
comparison or solution testing

“Panels inside trains shall be user-friendly.”

U Waterloo CS445/ECE451/CS645 Winter 2024 46

@ Flaws in a requirements document (ro)

* Noise: RD item yielding no information on any problem world feature (Variant:
uncontrolled redundancy)

“Non-smoking signs shall be posted on train windows.”

* Overspecification: RD item stating a feature not in the problem world but in the machine
solution

“The setAlarm method shall be invoked on receipt of an Alarm message.”
* Unfeasibility: RD item not implementable within budget/schedule
“In-train panels shall display all delayed flights at the next stop.”

* Unintelligibility: RD item is incomprehensible to those needing to use it
A requirement statement containing five acronyms

* Poor structuring: RD items are not organized according to any sensible or visible
structuring rule

Requirements that do not follow a structural rule (paragraphs, bullet points, subject-verb-object, “shall”)
U Waterloo CS445/ECE451/CS645 Winter 2024 47

@ Flaws in a requirements document ¢

* Forward reference: RD item making use of problem world features not
defined yet
Multiple uses of the concept of worst-case stopping distance appear several pages after in the RD before its
definition

* Remorse: RD item stating a problem world feature lately or incidentally

After multiple uses of the undefined concept of worst-case stopping distance, the last one is directly followed by an

incidental definition between parentheses

* Poor modifiability: RD items whose changes must be propagated
throughout the RD

Use of fixed numerical values for quantities subject to change

* Opacity: RD item whose rationale, authoring or dependencies are invisible

“The commanded train speed must always be at least seven mph above physical speed” without any explanation of
the rationale for this

U Waterloo CS445/ECE451/CS645 Winter 2024 48

Course Goals

* To understand the stakeholders’ needs and expectations
e Users, clients, etc.

* To determine the software system’s requirements

* To document the software system’s requirements

Requirements Engineering Process

Elicitation

Collecting
the users’

requirements

Analysis

Understanding
and modeling the
desired behavior

Validation

Specification

Documenting the
behavior of the
proposed software
system

Checking that our
specification

matches the users’

requirements

U Waterloo CS445/ECE451/CS645 Winter 2024

Software
Requirements
Specification

(SRS)

CS 445 / ECE 451 / CS 645

Software Requirements Specifications & Analysis

Introduction

